5 research outputs found

    Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations

    Get PDF
    Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down

    Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations

    Get PDF
    Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down

    Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2

    No full text
    Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments
    corecore