186 research outputs found
Time-Dependent Behavior of Linear Polarization in Unresolved Photospheres, With Applications for The Hanle Effect
Aims: This paper extends previous studies in modeling time varying linear
polarization due to axisymmetric magnetic fields in rotating stars. We use the
Hanle effect to predict variations in net line polarization, and use geometric
arguments to generalize these results to linear polarization due to other
mechanisms. Methods: Building on the work of Lopez Ariste et al., we use simple
analytic models of rotating stars that are symmetric except for an axisymmetric
magnetic field to predict the polarization lightcurve due to the Hanle effect.
We highlight the effects for the variable line polarization as a function of
viewing inclination and field axis obliquity. Finally, we use geometric
arguments to generalize our results to linear polarization from the weak
transverse Zeeman effect. Results: We derive analytic expressions to
demonstrate that the variable polarization lightcurve for an oblique magnetic
rotator is symmetric. This holds for any axisymmetric field distribution and
arbitrary viewing inclination to the rotation axis. Conclusions: For the
situation under consideration, the amplitude of the polarization variation is
set by the Hanle effect, but the shape of the variation in polarization with
phase depends largely on geometrical projection effects. Our work generalizes
the applicability of results described in Lopez Ariste et al., inasmuch as the
assumptions of a spherical star and an axisymmetric field are true, and
provides a strategy for separating the effects of perspective from the Hanle
effect itself for interpreting polarimetric lightcurves.Comment: 6 pages; 4 figures. Includes an extra figure found only in this
preprint versio
Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial
IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
The Roadmap to the POEMMA mission
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe ultrahigh-energy cosmic rays (UHECRs) and cosmic neutrinos from space with sensitivity over the full celestial sky. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two identical telescopes orbiting the Earth in a loose formation designed to observe extensive air showers (EAS) via air fluorescence and Cherenkov emissions. UHECRs and UHE neutrinos above 20 EeV are observed with the stereo fluorescence technique, while tau neutrinos above 20 PeV are observed via the optical Cherenkov signals produced by up-going EAS generated by the decay of Earth-emerging tau-leptons. The POEMMA satellites are designed to quickly re-orientate to follow up transient cosmic neutrino candidate sources and obtain unparalleled neutrino flux sensitivity. Both observation techniques and the instrument design are being validated by current and upcoming missions, such as Mini-EUSO and EUSO-SPB as part of the JEM-EUSO program, and the Terzina instrument onboard the NUSES SmallSat mission. We discuss the POEMMA science performance and the current roadmap to the POEMMA mission
Prospects for Cross-correlations of UHECR Events with Astrophysical Sources with Upcoming Space-based Experiments
Ultra-high energy cosmic rays (UHECRs) are the messengers of the most extreme physics in the cosmos; however, efforts to identify their origins have thus far been thwarted by the fact that they donât point back to their sources. Using statistical studies cross-correlating UHECR arrival directions with astrophysical catalogs, the ground-based Pierre Auger Observatory has reported hints of a correlation with nearby starburst galaxies, as well as lower-significance correlations with other classes of astrophysical sources. Space-based UHECR experiments, such as POEMMA and ZAP, will monitor large interaction volumes on the Earth or the Moon. Within a few years of mission operation time, both missions will achieve unprecedented exposures at energies above 40 EeV across the entire sky. We present studies of the cross-correlation between UHECR event arrival directions and astrophysical catalogs as motivated by expectations for the detector performance for POEMMA and ZAP. We find that both POEMMA and ZAP will achieve 5Ï discovery reach for many plausible astrophysical scenarios
- âŠ