18 research outputs found

    Mycobacterium tuberculosis Infection Up-Regulates Sialyl Lewis X Expression in the Lung Epithelium

    Get PDF
    Glycans display increasingly recognized roles in pathological contexts, however, their impact in the host-pathogen interplay in many infectious diseases remains largely unknown. This is the case for tuberculosis (TB), one of the ten most fatal diseases worldwide, caused by infection of the bacteria Mycobacterium tuberculosis. We have recently reported that perturbing the core-2 O -glycans biosynthetic pathway increases the host susceptibility to M. tuberculosis infection, by disrupting the neutrophil homeostasis and enhancing lung pathology. In the present study, we show an increased expression of the sialylated glycan structure Sialyl-Lewis X (SLeX) in the lung epithelium upon M. tuberculosis infection. This increase in SLeX glycan epitope is accompanied by an altered lung tissue transcriptomic signature, with up-regulation of genes codifying enzymes that are involved in the SLeX core-2 O -glycans biosynthetic pathway. This study provides novel insights into previously unappreciated molecular mechanisms involving glycosylation, which modulate the host response to M. tuberculosis infection, possibly contributing to shape TB disease outcome

    Clinical grade ACE2 as a universal agent to block SARS-CoV-2 variants

    Full text link
    The recent emergence of multiple SARS-CoV-2 variants has caused considerable concern due to both reduced vaccine efficacy and escape from neutralizing antibody therapeutics. It is, therefore, paramount to develop therapeutic strategies that inhibit all known and future SARS-CoV-2 variants. Here, we report that all SARS-CoV-2 variants analyzed, including variants of concern (VOC) Alpha, Beta, Gamma, Delta, and Omicron, exhibit enhanced binding affinity to clinical grade and phase 2 tested recombinant human soluble ACE2 (APN01). Importantly, soluble ACE2 neutralized infection of VeroE6 cells and human lung epithelial cells by all current VOC strains with markedly enhanced potency when compared to reference SARS-CoV-2 isolates. Effective inhibition of infections with SARS-CoV-2 variants was validated and confirmed in two independent laboratories. These data show that SARS-CoV-2 variants that have emerged around the world, including current VOC and several variants of interest, can be inhibited by soluble ACE2, providing proof of principle of a pan-SARS-CoV-2 therapeutic

    Gastric Cancer Cell Glycosylation as a Modulator of the ErbB2 Oncogenic Receptor

    Get PDF
    Aberrant expression and hyperactivation of the human epidermal growth factor receptor 2 (ErbB2) constitute crucial molecular events underpinning gastric neoplastic transformation. Despite ErbB2 extracellular domain being a well-known target for glycosylation, its glycosylation profile and the molecular mechanisms through which it actively tunes tumorigenesis in gastric cancer (GC) cells remain elusive. We aimed at disclosing relevant ErbB2 glycan signatures and their functional impact on receptor’s biology in GC cells. The transcriptomic profile of cancer-relevant glycosylation enzymes, and the expression and activation of the ErbB receptors were characterized in four GC cell lines. Cellular- and receptor-specific glycan profiling of ErbB2-overexpressing NCI-N87 cells unveiled a heterogeneous glycosylation pattern harboring the tumor-associated sialyl Lewis a (SLea) antigen. The expression of SLea and key enzymes integrating its biosynthetic pathway were strongly upregulated in this GC cell line. An association between the expression of ERBB2 and FUT3, a central gene in SLea biosynthesis, was disclosed in GC patients, further highlighting the crosstalk between ErbB2 and SLea expression. Moreover, cellular deglycosylation and CA 19.9 antibody-mediated blocking of SLea drastically altered ErbB2 expression and activation in NCI-N87 cells. Altogether, NCI-N87 cell line constitutes an appealing in vitro model to address glycan-mediated regulation of ErbB2 in GC

    Multicellular Human Gastric Cancer Spheroids Mimic the Glycosylation Phenotype of Gastric Carcinomas

    Get PDF
    Cellular glycosylation plays a pivotal role in several molecular mechanisms controlling cell–cell recognition, communication, and adhesion. Thus, aberrant glycosylation has a major impact on the acquisition of malignant features in the tumor progression of patients. To mimic these in vivo features, an innovative high-throughput 3D spheroid culture methodology has been developed for gastric cancer cells. The assessment of cancer cell spheroids’ physical characteristics, such as size, morphology and solidity, as well as the impact of glycosylation inhibitors on spheroid formation was performed applying automated image analysis. A detailed evaluation of key glycans and glycoproteins displayed by the gastric cancer spheroids and their counterpart cells cultured under conventional 2D conditions was performed. Our results show that, by applying 3D cell culture approaches, the model cell lines represented the differentiation features observed in the original tumors and the cellular glycocalix underwent striking changes, displaying increased expression of cancer-associated glycan antigens and mucin MUC1, ultimately better simulating the glycosylation phenotype of the gastric tumor

    The Thomsen-Friedenreich Antigen: A Highly Sensitive and Specific Predictor of Microsatellite Instability in Gastric Cancer

    No full text
    Microsatellite instability (MSI) is a distinct molecular subtype of gastric cancer. In recent years, the clinical consequences of MSI and the therapeutic opportunities to target this peculiar cancer subtype became evident. However, despite the importance of MSI for the stratification of patients, the time and resources required for diagnosis still present an obstacle. In an attempt to identify a new marker for MSI in gastric cancer, we evaluated the expression of five cancer-associated glycan epitopes in a cohort of 13 MSI and 17 microsatellite stable (MSS) cases. Our analysis revealed a highly significant (p < 0.001) association between the expression of the Thomsen-Friedenreich (TF) antigen and MSI status. Hence, we present here the identification of the first single marker for MSI in gastric cancer, excelling with a specificity of 94% (16/17), sensitivity of 69.2% (9/13), negative predictive value of 80% (16/20), and positive predictive value of 90% (9/10). The TF antigen, detected by simple antibody-based assays, is highly specific for carcinoma being undetectable in gastric healthy and premalignant epithelia. This finding lays the basis for new studies and holds promise in improving the rapid identification of MSI in the clinical setting

    Glycomic and sialoproteomic data of gastric carcinoma cells overexpressing ST3GAL4

    Get PDF
    Gastric carcinoma MKN45 cells stably transfected with the full-length ST3GAL4 gene were characterised by glycomic and sialoproteomic analysis. Complementary strategies were applied to assess the glycomic alterations induced by ST3GAL4 overexpression. The N- and O-glycome data were generated in two parallel structural analyzes, based on PGC-ESI-MS/MS. Data on glycan structure identification and relative abundance in ST3GAL4 overexpressing cells and respective mock control are presented. The sialoproteomic analysis based on titanium-dioxide enrichment of sialopeptides with subsequent LC-MS/MS identification was performed. This analysis identified 47 proteins with significantly increased sialylation. The data in this article is associated with the research article published in Biochim Biophys Acta “Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer” [1]. Keywords: N-glycome, O-glycome, Gastric cancer, Sialyltransferase, Sialoproteom

    O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotypeResearch in context

    Get PDF
    Background: Changes in glycosylation are known to play critical roles during gastric carcinogenesis. Expression of truncated O-glycans, such as the Sialyl-Tn (STn) antigen, is a common feature shared by many cancers and is associated with cancer aggressiveness and poor-prognosis. Methods: Glycoengineered cell lines were used to evaluate the impact of truncated O-glycans in cancer cell biology using in vitro functional assays, transcriptomic analysis and in vivo models. Tumor patients ‘samples and datasets were used for clinical translational significance evaluation. Findings: In the present study, we demonstrated that gastric cancer cells expressing truncated O-glycans display major phenotypic alterations associated with higher cell motility and cell invasion. Noteworthy, the glycoengineered cancer cells overexpressing STn resulted in tumor xenografts with less cohesive features which had a critical impact on mice survival. Furthermore, truncation of O-glycans induced activation of EGFR and ErbB2 receptors and a transcriptomic signature switch of gastric cancer cells. The disclosed top activated genes were further validated in gastric tumors, revealing that SRPX2 and RUNX1 are concomitantly overexpressed in gastric carcinomas and its expression is associated with patients' poor-survival, highlighting their prognosis potential in clinical practice. Interpretation: This study discloses novel molecular links between O-glycans truncation frequently observed in cancer and key cellular regulators with major impact in tumor progression and patients' clinical outcome. Keywords: Gastric cancer, Sialyl-Tn, RUNX1, SRPX2, Poor-surviva
    corecore