731 research outputs found

    Concurrent Gaming Disorder/Internet Gaming Disorder and Electronic Nicotine Delivery Systems Dependency in Emerging Adults [pre-print]

    Get PDF
    A growing proportion of young adults report regularly playing video games and using electronic nicotine delivery systems (ENDS). Although video gaming is often normative and adaptive, excessive gaming is associated with adverse health outcomes and dependency, as seen in gaming disorder/internet gaming disorder (GD/IGD). Possible additive detrimental effects of ENDS use on the physical outcomes of GD/IGD lend particular concern to these concurrent behaviors. The present study explored group differences in concurrent ENDS and GD/IGD dependency by demographic factors, including age, sex, gender, sexual orientation, racial identity, relationship status, and year in school. The interaction effect of symptoms of attention-deficit hyperactivity disorder (ADHD) on the association between ENDS dependency and GD/IGD was also examined. Lastly, group differences in ADHD symptoms for individuals who endorse (1) neither GD/IGD nor ENDS dependency, (2) either GD/IGD or ENDS dependency, or (3) both GD/IGD and ENDS dependency were explored. Data were collected in a large, multi-university sample of college students (N = 1,054). Higher symptoms of GD/IGD were positively associated with greater symptoms of ENDS dependency. Men and individuals with significant symptoms of ADHD were at an increased risk of concurrent GD/IGD and ENDS dependency. These results may be used to identify demographic and psychological associations linked to these comorbidities, ultimately informing future prevention strategies

    Tracing plant source water dynamics during drought by continuous transpiration measurements : An in-situ stable isotope approach

    Get PDF
    Publisher Copyright: © 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.The isotopic composition of xylem water (δX) is of considerable interest for plant source water studies. In-situ monitored isotopic composition of transpired water (δT) could provide a nondestructive proxy for δX-values. Using flow-through leaf chambers, we monitored 2-hourly δT-dynamics in two tropical plant species, one canopy-forming tree and one understory herbaceous species. In an enclosed rainforest (Biosphere 2), we observed δT-dynamics in response to an experimental severe drought, followed by a 2H deep-water pulse applied belowground before starting regular rain. We also sampled branches to obtain δX-values from cryogenic vacuum extraction (CVE). Daily flux-weighted δ18OT-values were a good proxy for δ18OX-values under well-watered and drought conditions that matched the rainforest's water source. Transpiration-derived δ18OX-values were mostly lower than CVE-derived values. Transpiration-derived δ2HX-values were relatively high compared to source water and consistently higher than CVE-derived values during drought. Tracing the 2H deep-water pulse in real-time showed distinct water uptake and transport responses: a fast and strong contribution of deep water to canopy tree transpiration contrasting with a slow and limited contribution to understory species transpiration. Thus, the in-situ transpiration method is a promising tool to capture rapid dynamics in plant water uptake and use by both woody and nonwoody species.Peer reviewe

    The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India

    Get PDF
    High-frequency atmospheric measurements of methane (CH[subscript 4]), nitrous oxide (N[subscript 2]O) and sulfur hexafluoride (SF[subscript 6]) from Darjeeling, India are presented from December 2011 (CH[subscript 4])/March 2012 (N[subscript 2]O and SF[subscript 6]) through February 2013. These measurements were made on a gas chromatograph equipped with a flame ionization detector and electron capture detector, and were calibrated on the Tohoku University, the Scripps Institution of Oceanography (SIO)-98 and SIO-2005 scales for CH[subscript 4], N[subscript 2]O and SF[subscript 6], respectively. The observations show large variability and frequent pollution events in CH[subscript 4] and N[subscript 2]O mole fractions, suggesting significant sources in the regions sampled by Darjeeling throughout the year. By contrast, SF[subscript 6] mole fractions show little variability and only occasional pollution episodes, likely due to weak sources in the region. Simulations using the Numerical Atmospheric dispersion Modelling Environment (NAME) particle dispersion model suggest that many of the enhancements in the three gases result from the transport of pollutants from the densely populated Indo-Gangetic Plains of India to Darjeeling. The meteorology of the region varies considerably throughout the year from Himalayan flows in the winter to the strong south Asian summer monsoon. The model is consistent in simulating a diurnal cycle in CH[subscript 4] and N[subscript 2]O mole fractions that is present during the winter but absent in the summer and suggests that the signals measured at Darjeeling are dominated by large-scale (~100 km) flows rather than local (<10 km) flows.Massachusetts Institute of Technology. Center for Global Change Science (Director's Fund)Massachusetts Institute of Technology. Joint Program on the Science & Policy of Global ChangeMartin Family Society of Fellows for SustainabilityMIT Energy InitiativeMIT International Science and Technology InitiativeUnited States. National Aeronautics and Space Administration (Grant NNX11AF17G)United States. National Oceanic and Atmospheric Administration (Contract RA133R09CN0062

    Chiral monoterpenes reveal forest emission mechanisms and drought responses

    Get PDF
    Monoterpenes (C10H16) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year−1), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth’s radiative budget and, thereby, climate change1,2,3. Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (−) forms are rarely distinguished in measurement or modelling studies4,5,6. Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment7. Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (−)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (−)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change

    Differences in N2O Fluxes and Denitrification Gene Abundance in the Wet and Dry Seasons Through Soil and Plant Residue Characteristics of Tropical Tree Crops

    Get PDF
    The conversion of forest to agricultural soils is a widespread activity in tropical systems, and its link to nitrous oxide (N2O) fluxes and nitrogen cycling gene abundance is relevant to understand environmental drivers that may interact with climate change. A current challenge to estimating N2O emissions from land use conversion is an incomplete understanding of crop-specific impacts on denitrifier communities and the N2O fluxes driven by differences in the above- and below-ground inputs with crop type. To address this knowledge gap in tree crops, we evaluated N2O fluxes and denitrification gene abundance and their relationships with soil and plant residue characteristics in citrus and eucalyptus plantations in the field and in soil incubations. We found that the accumulated N2O fluxes from soil were lower for the two agricultural field sites than those for their adjacent forest sites in dry and wet seasons. The N2O fluxes were higher in the wet season, and this seasonal difference persisted even when the soils collected from both seasons were incubated under the same moisture and temperature conditions in the lab for 30 days. Increased N2O fluxes in the wet season were accompanied by an increase in soil nirK and nosZ gene abundance, the dissolved organic carbon (DOC) concentration, and the total soil carbon (C) and nitrogen (N) content. In turn, the abundance of denitrifiers, as indicated by nirK, nirS, and nosZ gene copy numbers, showed a low but significant positive correlation with soil bulk density. Our results suggest that soil moisture, leaf litter, and crop residues influence the seasonal differences in both N2O fluxes and abundance of denitrifiers in citrus- and eucalyptus-cultivated soils, likely through effects on soil physicochemical characteristics. These findings highlight the overwhelming role of environmental drivers that can make investigating microbial drivers difficult in the field and open the possibility for a better understanding of N cycling processes in tropical soils based on paired field- and incubation-based experimentation

    Economic evaluation of shortened, bedaquiline-containing treatment regimens for rifampicin-resistant tuberculosis (STREAM stage 2): a within-trial analysis of a randomised controlled trial

    Get PDF
    BACKGROUND: The STREAM stage 2 trial assessed two bedaquiline-containing regimens for rifampicin-resistant tuberculosis: a 9-month all-oral regimen and a 6-month regimen containing an injectable drug for the first 2 months. We did a within-trial economic evaluation of these regimens. METHODS: STREAM stage 2 was an international, phase 3, non-inferiority randomised trial in which participants with rifampicin-resistant tuberculosis were randomly assigned (1:2:2:2) to the 2011 WHO regimen (terminated early), a 9-month injectable-containing regimen (control regimen), a 9-month all-oral regimen with bedaquiline (oral regimen), or a 6-month regimen with bedaquiline and an injectable for the first 2 months (6-month regimen). We prospectively collected direct and indirect costs and health-related quality of life data from trial participants until week 76 of follow-up. Cost-effectiveness of the oral and 6-month regimens versus control was estimated in four countries (oral regimen) and two countries (6-month regimen), using health-related quality of life for cost-utility analysis and trial efficacy for cost-effectiveness analysis. This trial is registered with ISRCTN, ISRCTN18148631. FINDINGS: 300 participants were included in the economic analyses (Ethiopia, 61; India, 142; Moldova, 51; Uganda, 46). In the cost-utility analysis, the oral regimen was not cost-effective in Ethiopia, India, Moldova, and Uganda from either a provider or societal perspective. In Moldova, the oral regimen was dominant from a societal perspective. In the cost-effectiveness analysis, the oral regimen was likely to be cost-effective from a provider perspective at willingness-to-pay thresholds per additional favourable outcome of more than US4500inEthiopia,4500 in Ethiopia, 1900 in India, 3950inMoldova,and3950 in Moldova, and 7900 in Uganda, and from a societal perspective at thresholds of more than 15 900inEthiopia,15 900 in Ethiopia, 3150 in India, and 4350inUganda,whileinMoldovatheoralregimenwasdominant.InEthiopiaandIndia,the6−monthregimenwouldcosttuberculosisprogrammesandparticipantslessthanthecontrolregimenandwashighlylikelytobecost−effectiveinbothcost−utilityanalysisandcost−effectivenessanalysis.Reducingthebedaquilinepricefrom4350 in Uganda, while in Moldova the oral regimen was dominant. In Ethiopia and India, the 6-month regimen would cost tuberculosis programmes and participants less than the control regimen and was highly likely to be cost-effective in both cost-utility analysis and cost-effectiveness analysis. Reducing the bedaquiline price from 1·81 to $1·00 per tablet made the oral regimen cost-effective in the provider-perspective cost-utility analysis in India and Moldova and dominate over the control regimen in the provider-perspective cost-effectiveness analysis in India. INTERPRETATION: At current costs, the oral bedaquiline-containing regimen for rifampicin-resistant tuberculosis is unlikely to be cost-effective in many low-income and middle-income countries. The 6-month regimen represents a cost-effective alternative if injectable use for 2 months is acceptable. FUNDING: USAID and Janssen Research & Development

    Hydrogenation of Organic Matter as a Terminal Electron Sink Sustains High CO2:CH4 Production Ratios During Anaerobic Decomposition

    Get PDF
    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 \u3e1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios

    Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    Get PDF
    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.Engineering and Applied Science
    • …
    corecore