203 research outputs found

    Performance Test Results of the NASA-457M v2 Hall Thruster

    Get PDF
    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63

    Diagnostic criteria and symptom grading for delayed gastric conduit emptying after esophagectomy for cancer: international expert consensus based on a modified Delphi process

    Get PDF
    Delayed gastric conduit emptying (DGCE) after esophagectomy for cancer is associated with adverse outcomes and troubling symptoms. Widely accepted diagnostic criteria and a symptom grading tool for DGCE are missing. This hampers the interpretation and comparison of studies. A modified Delphi process, using repeated web-based questionnaires, combined with live interim group discussions was conducted by 33 experts within the field, from Europe, North America, and Asia. DGCE was divided into early DGCE if present within 14 days of surgery and late if present later than 14 days after surgery. The final criteria for early DGCE, accepted by 25 of 27 (93%) experts, were as follows: >500 mL diurnal nasogastric tube output measured on the morning of postoperative day 5 or later or >100% increased gastric tube width on frontal chest x-ray projection together with the presence of an air-fluid level. The final criteria for late DGCE accepted by 89% of the experts were as follows: the patient should have 'quite a bit' or 'very much' of at least two of the following symptoms; early satiety/fullness, vomiting, nausea, regurgitation or inability to meet caloric need by oral intake and delayed contrast passage on upper gastrointestinal water-soluble contrast radiogram or on timed barium swallow. A symptom grading tool for late DGCE was constructed grading each symptom as: 'not at all', 'a little', 'quite a bit', or 'very much', generating 0, 1, 2, or 3 points, respectively. For the five symptoms retained in the diagnostic criteria for late DGCE, the minimum score would be 0, and the maximum score would be 15. The final symptom grading tool for late DGCE was accepted by 27 of 31 (87%) experts. For the first time, diagnostic criteria for early and late DGCE and a symptom grading tool for late DGCE are available, based on an international expert consensus process

    Channel Coupling in A(e,eN)BA(\vec{e},e' \vec{N})B Reactions

    Full text link
    The sensitivity of momentum distributions, recoil polarization observables, and response functions for nucleon knockout by polarized electrons to channel coupling in final-state interactions is investigated using a model in which both the distorting and the coupling potentials are constructed by folding density-dependent effective interactions with nuclear transition densities. Calculations for 16^{16}O are presented for 200 and 433 MeV ejectile energies, corresponding to proposed experiments at MAMI and TJNAF, and for 12^{12}C at 70 and 270 MeV, corresponding to experiments at NIKHEF and MIT-Bates. The relative importance of charge exchange decreases as the ejectile energy increases, but remains significant for 200 MeV. Both proton and neutron knockout cross sections for large recoil momenta, pm>300p_m > 300 MeV/c, are substantially affected by inelastic couplings even at 433 MeV. Significant effects on the cross section for neutron knockout are also predicted at smaller recoil momenta, especially for low energies. Polarization transfer for proton knockout is insensitive to channel coupling, even for fairly low ejectile energies, but polarization transfer for neutron knockout retains nonnegligible sensitivity to channel coupling for energies up to about 200 MeV. The present results suggest that possible medium modifications of neutron and proton electromagnetic form factors for Q20.5(GeV/c)2Q^2 \gtrsim 0.5 (GeV/c)^2 can be studied using recoil polarization with relatively little sensitivity due to final state interactions.Comment: Substantially revised version accepted by Phys. Rev. C; shortened to 49 pages including 21 figure

    Hamstring muscles: Architecture and innervation

    Get PDF
    Knowledge of the anatomical organization of the hamstring muscles is necessary to understand their functions, and to assist in the development of accurate clinical and biomechanical models. The hamstring muscles were examined by dissection in six embalmed human lower limbs with the purpose of clarifying their gross morphology. In addition to obtaining evidence for or against anatomical partitioning ( as based on muscle architecture and pattern of innervation), data pertaining to architectural parameters such as fascicular length, volume, physiological cross-sectional area, and tendon length were collected. For each muscle, relatively consistent patterns of innervation were identified between specimens, and each was unique with respect to anatomical organization. On the basis of muscle architecture, three regions were identified within semimembranosus. However, this was not completely congruent with the pattern of innervation, as a primary nerve branch supplied only two regions, with the third region receiving a secondary branch. Semitendinosus comprised two distinct partitions arranged in series that were divided by a tendinous inscription. A singular muscle nerve or a primary nerve branch innervated each partition. In the biceps femoris long head the two regions were supplied via a primary nerve branch which divided into two primary branches or split into a series of branches. Being the only muscle to cross a single joint, biceps femoris short head consisted of two distinct regions demarcated by fiber direction, with each innervated by a separate muscle nerve. Architecturally, each muscle differed with respect to parameters such as physiological cross-sectional area, fascicular length and volume, but generally all partitions within an individual muscle were similar in fascicular length. The long proximal and distal tendons of these muscles extended into the muscle bellies thereby forming elongated musculotendinous junctions. Copyright (C) 2005 S. Karger AG, Basel

    Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube

    Get PDF
    The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society

    Labeling Preschoolers as Learning Disabled: A Cautionary Position

    Get PDF
    The purpose of this article is to explore the issues concerning the adaptation of school-based service delivery concepts for use in early childhood special education programs. The use of categorical labels for determining eligibility for preschool children is not required by law—and may be detrimental. The following concerns are discussed: (a) definitional issues in learning disabilities versus low achievement, (b) the dangers of labeling and low expectation sets, (c) repeated failure to demonstrate movement through a continuum of services (particularly to least restrictive environments), and (d) the efficacy of early intervention and school-based special services for those with mild or suspected developmental disabilities. Research is reviewed concerning definitional and assessment issues utilizing learning disabilities as a construct. Alternatives for describing the characteristics of young children who are significantly at risk or developmentally delayed are provided.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far. © 2017 American Physical Society

    Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    Get PDF
    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits. © 2017 American Physical Society
    corecore