46 research outputs found

    What are the different styles of calcite precipitation within a hyperalkaline leachate? A sedimentological Anthropocene case study

    Get PDF
    This study aims to compare the fabrics of anthropogenic carbonates downstream of lime and steel disposal sites with models of carbonate precipitation from natural systems to elucidate potential drivers, precipitation mechanisms, morphological similarities, predictability in 3D facies distributions and depositional models of these systems. For this purpose, a combination of sedimentological, mineralogical and geochemical approaches is conducted including the analysis of microfacies (petrographic microscope and electron microscopy), X-ray diffraction and hydrochemistry. The data show that both anthropogenic and natural systems exhibit clear proximal, middle and distal zones of carbonate precipitation. The main macroscopic differences are the dominance of swamp environments in the proximal zone and the prevalence of tufa-like barrage-and-pool sequences in the middle and distal zones. Microfabrics in anthropogenic sites are comparable to travertines but lack the sub-surface facies and at extreme pH exhibit sparry crusts without clear equivalents in travertines. This sedimentology of anthropogenic carbonates shows that calcite mineral formation is complex and not homogeneous or purely driven by thermodynamic processes. Considering the sedimentology of these human-induced systems will help us understand precipitation mechanisms which will aid both efforts to utilise anthropogenic alkaline wastes for carbon capture and manage their environmental impacts

    A depositional model for spherulitic carbonates associated with alkaline, volcanic lakes

    Get PDF
    The South Atlantic Aptian ‘Pre-salt’ reservoirs are formed by a combination of spherulitic carbonates and Mg-rich clays accumulated in volcanic alkaline lake settings with exotic chemistries. So far, outcrop analogues characterised by metre-thick successions deposited in lacustrine scenarios are elusive so disentangling the genesis of spherulitic carbonates represents a major scientific challenge with business impact. In particular the controls on spatial distribution and the environment of spherulitic facies formation remain poorly constrained, little studied, and hotly debated. To shed light on this conundrum, a spherulitic carbonate-rich, alkaline volcanic lacustrine succession has been analysed at outcrop scale: the Carboniferous East Kirkton Limestone (Scotland). Despite clays being very scarce and limited to layers of amorphous Mg-Si minerals, a diverse array of spherulitic calcitic components were formed, including coated grains, crusts, and build-ups. This setting enables the mechanisms of spherulitic calcite development and the patterns of sediment accumulation to be explored in a geobiological and hydrochemical scenario similar to the ‘Pre-Salt’ subsurface occurrences but divorced from clay influence. The integration of logs, borehole data, outcrop photomosaics and petrographic observations collectively allowed the reconstruction of a depositional model for the East Kirkton lacustrine succession. In this model, calcite spherule nucleation took place at the sediment-water interface in the littoral zone, driven by the co-occurrence of 1) high alkalinity, 2) Ca-Mg rich hydrochemistry, and 3) microbial-derived colloidal exopolymeric substances. These environmental conditions permitted the coeval development of spherulitic cementstone build-ups and spherulitic grainstone-packstone within the wave-agitated zone, and the accumulation of floatstones and laminites of spherulitic grains in deeper lake regions by means of downslope reworking. This model is consistent with the previously documented microbial bloom occurrences and highlights the need to better understand the complex ‘microbe-solution’ interactions before any reliable facies model is envisaged

    What Causes Carbonates to Form “Shrubby” Morphologies? An Anthropocene Limestone Case Study

    Get PDF
    The South Atlantic Aptian “Pre-Salt” shrubby carbonate successions offshore Brazil and Angola are of major interest due to their potential hydrocarbon accumulations. Although the general sedimentology of these deposits is widely recognized to be within saline, alkaline lakes in rift volcanic settings, the specific genesis of shrubby carbonate morphologies remains unclear. This study reports the first petrographically comparable shrubby carbonates amongst other carbonate microfacies from an Anthropocene limestone formed under hyperalkaline (pH 9–12) and hypersaline (conductivity 425–3200 ÎŒS) conditions at ambient temperature (12.5–13°C) (Consett, United Kingdom). This discovery allows us to capitalize on exceptional long-term hydrochemical monitoring efforts from the site, demonstrating that shrubby carbonates occur uniquely within the waters richest in calcium (∌240 mg/L) and with highest pH (∌12) and consequently with very high levels of supersaturation. However, the physical distribution of shrubs is more comparable with estimated local kinetic precipitation rate than it is to thermodynamic saturation, indicating that the fundamental control on shrub formation arises from crystal surface processes. The shrubby carbonate we report grows in the presence of significant diatomaceous and cyanobacterial biofilms, despite the highly alkaline conditions. These biofilms are lost from the deposited material early due to the high solubility of organic and silica within hyperalkaline settings, and this loss contributes to very high intercrystalline porosity. Despite the presence of these microbes, few if any of the fabrics we report would be considered as “boundstones” despite it being clear that most fabrics are being deposited in the presence of abundant extra-cellular polymeric substances. We are aware of no previous petrographic work on anthropogenic carbonates of this type, and recommend further investigation to capitalize on what can be learned from these “accidental laboratories.”

    The geomorphological distribution of subaqueous tufa columns within a hypersaline lake : Mono Lake, USA

    Get PDF
    Acknowledgments This work was supported by funding from BP Group. We thank the Mono Lake Committee for supporting fieldwork and for helping our vessel onto and most of all off the lake, and the State of California for permitting access to the lake and its environs. Dave Marquart is thanked for his support and knowledge of the lake environment. Cody and Phillip are thanked for their help on the lake, and Vern for vital logistical support. Ian Billing is thanked for his instrumental involvement in this project, and his role in shaping our thoughts. We hope he would be pleased with this paper. Dr. Chelsea Pederson, Dr. W. Fischer are heartily thanked for their excellent efforts as reviewers improving this manuscript, and Dr. Juan Carlos Laya is thanked for his careful handling of the manuscript as Associate Editor.Peer reviewedPostprin

    Effects of salinity, organic acids and alkalinity on the growth of calcite spherulites: Implications for evaporitic lacustrine sedimentation

    Get PDF
    Lacustrine non‐skeletal carbonates exhibit a diversity of petrographies due to interactions between physico‐chemical and biologically influenced mechanisms. Despite the suggestion that evaporative concentration was involved in the formation of spherulite and shrubby‐bearing carbonate successions in the Pre‐Salt Cretaceous alkaline lakes of the South Atlantic, no consensus exists about the water chemistries promoting these exotic mineral textures. In this work, an experimental approach was developed to evaluate how changes in salinity (NaCl) and biopolymer concentrations (alginic acid) impact calcite growth dynamics from saline and alkaline synthetic solutions. Hydrochemical and petrographical data from selected modern saline/ alkaline environments was compared with experimental datasets to further estimate how the underlying (bio)chemical conditions and lake locations likely converge to allow the formation of calcite spherulite grains in evaporitic settings. Spherulitic calcite from Recent saline lakes and experiments arise from waters with moderate to high [Calcium]/[Alkalinity] ratios ([Ca]/[Alk]) rather than in calcium‐depleted and alkaline‐rich environments which tend to produce single‐crystal calcites during abiotic water mixing or lake evaporation. This is consistent with the assembly of polycrystalline textures being a kinetically controlled feature, forced by remarkably high rates of nucleation. Also, the data analysed do not support a causative relationship between evaporite‐driven salinity fluctuations and the preferential formation of spherulites, shrubs or their intermediate textures. Ubiquitous in saline lakes, organic substances can lower the kinetic thresholds for spherulitic calcite aggregation while microbial photosynthesis can also raise pH, altogether enhancing calcite supersaturation and promoting spherulite formation in waters with moderate‐high [Ca]/[Alk] ratios and high salinities. Localised observations of abiotic spherulites in Recent soda lakes can occur in restricted mixing zones where [Ca]/[Alk] ratios are enhanced. This work highlights the roles of concentration regimes associated with biopolymers and microbial metabolism against the background salinity fluctuations in determining the morphological and textural transitions in lacustrine carbonate minerals

    New palynological data in Muschelkalk facies of the Catalan Coastal Ranges (NE of the Iberian Peninsula)

    Get PDF
    The Middle Triassic (Ladinian) deposits of the Catalan Basin (Spain) are essentially represented by extensive marine carbonate platforms developed in a rift tectonic setting. During the Ladinian, a regional sea-level drop led to a significant paleogeographic reorganisation of the depocentres of eastern Iberia producing a relevant shift in the distribution of the sedimentary environments. To better calibrate the age of the correlative conformity and the associated depositional facies, a new palynological study was carried out in two localities in Tarragona province (Spain). The palynological assemblages suggest a Longobardian–Cordevolian age (Middle–Late Triassic transition) for the materials deposited below and above the correlative conformity. This study allows a refined biostratigraphic and sedimentary correlation between the carbonate sediments in the Catalan Basin and those in the Iberian Ranges and adjacent basins of the Tethys region

    Are spherulitic lacustrine carbonates an expression of large-scale mineral carbonation? : A case study from the East Kirkton Limestone, Scotland

    Get PDF
    BP Exploration Co. is thanked for funding, and particularly the Carbonate Team for supporting this research and for fruitful discussions. West Lothian Council and Scottish Natural Heritage are thanked for allowing access and permission for sampling the site. The Core Store Team at BGS Keyworth is particularly acknowledged for their assistance. Mark Anderson, Tony Sinclair (University of Hull), and Bouk Lacet (VU University Amsterdam) are thanked for technical support. Anne Kelly (SUERC) for carrying out the Strontium Isotope analyses. Mark Tyrer is thanked for his advice on PHREEQC modelling.Peer reviewedPostprin

    New palynological data in Muschelkalk facies of the Catalan Coastal Ranges (NE of the Iberian Peninsula)

    Get PDF
    The Middle Triassic (Ladinian) deposits of the Catalan Basin (Spain) are essentially represented by extensive marine carbonate platforms developed in a rift tectonic setting. During the Ladinian, a regional sea-level drop led to a significant paleogeographic reorganisation of the depocentres of eastern Iberia producing a relevant shift in the distribution of the sedimentary environments. To better calibrate the age of the correlative conformity and the associated depositional facies, a new palynological study was carried out in two localities in Tarragona province (Spain). The palynological assemblages suggest a Longobardian–Cordevolian age (Middle–Late Triassic transition) for the materials deposited below and above the correlative conformity. This study allows a refined biostratigraphic and sedimentary correlation between the carbonate sediments in the Catalan Basin and those in the Iberian Ranges and adjacent basins of the Tethys region

    Prokaryotic and viral community of the sulfate‐rich crust from Peñahueca ephemeral lake, an astrobiology analogue

    Get PDF
    Peñahueca is an athalassohaline hypersaline inland ephemeral lake originated under semiarid conditions in the central Iberian Peninsula (Spain). Its chemical composition makes it extreme for microbial life as well as a terrestrial analogue of other planetary environments. To investigate the persistence of microbial life associated with sulfate‐rich crusts, we applied cultivation‐independent methods (optical and electron microscopy, 16S rRNA gene profiling and metagenomics) to describe the prokaryotic community and its associated viruses. The diversity for Bacteria was very low and was vastly dominated by endospore formers related to Pontibacillus marinus of the Firmicutes phylum. The archaeal assemblage was more diverse and included taxa related to those normally found in hypersaline environments. Several ‘metagenome assembled genomes’ were recovered, corresponding to new species of Pontibacillus, several species from the Halobacteria and one new member of the Nanohaloarchaeota. The viral assemblage, although composed of the morphotypes typical of high salt systems, showed little similarity to previously isolated/reconstructed halophages. Several putative prophages of Pontibacillus and haloarchaeal hosts were identified. Remarkably, the Peñahueca sulfate‐rich metagenome contained CRISPR‐associated proteins and repetitions which were over 10‐fold higher than in most hypersaline systems analysed so far.This research was supported by the Spanish Ministry of Economy projects CLG2015_66686-C3-1 (to RRM) CLG2015_66686-C3-3 (to JA), CGL2015-66455-R (to MAGC, MESM, JPRA), AYA2011-24803 and ESP2015-69540-R (to VP) which were also supported by the European Regional Development Fund and the MDM-2017-0737 Unidad de Excelencia “MarĂ­a de Maeztu”- Centro de AstrobiologĂ­a (INTA-CSIC)

    Neutral and ionic platinum compounds containing a cyclometalated chiral primary amine: Synthesis, antitumor activity, DNA interaction and topoisomerase I - cathepsin B inhibition

    Get PDF
    The synthesis and preliminary biological evaluation of neutral and cationic platinum derivatives of chiral 1-(1-naphthyl)ethylamine are reported, namely cycloplatinated neutral complexes [PtCl{(R or S)-NH(2)CH(CH(3))C(10)H(6)}(L)] [L = SOMe(2) ( 1-R or 1-S ), L = PPh(3) (2-R or 2-S), L = P(4-FC(6)H(4))(3) (3-R), L = P(CH(2))(3)N(3)(CH(2))(3) (4-R)], cycloplatinated cationic complexes [Pt{(R)-NH(2)CH(CH(3))C(10)H(6)}{L}]Cl [L = Ph(2)PCH(2)CH(2)PPh(2) (5-R), L = (C(6)F(5))(2)PCH(2)CH(2)P(C(6)F(5))(2) (6-R)] and the Pt(ii) coordination compound trans-[PtCl(2){(R)-NH(2)CH(CH(3))C(10)H(6)}(2)] (7-R). The X-ray molecular structure of 7-R is reported. The cytotoxic activity against a panel of human adenocarcinoma cell lines (A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon), cell cycle arrest and apoptosis, DNA interaction, topoisomerase I and cathepsin B inhibition, and Pt cell uptake of the studied compounds are presented. Remarkable cytotoxicity was observed for most of the synthesized Pt(ii) compounds regardless of (i) the absolute configuration R or S, and (ii) the coordinated/cyclometallated (neutral or cationic) nature of the complexes. The most potent compound 2-R (IC(50) = 270 nM) showed a 148-fold increase in potency with regard to cisplatin in HCT-116 colon cancer cells. Preliminary biological results point out to different biomolecular targets for the investigated compounds. Neutral cyclometallated complexes 1-R and 2-R, modify the DNA migration as cisplatin, cationic platinacycle 5-R was able to inhibit topoisomerase I-promoted DNA supercoiling, and Pt(ii) coordination compound 7-R turned out to be the most potent inhibitor of cathepsin B. Induction of G-1 phase ( 2-R and 5-R ), and S and G-2 phases (6-R) arrests are related to the antiproliferative activity of some representative compounds upon A-549 cells. Induction of apoptosis is also observed for 2-R and 6-R
    corecore