38 research outputs found

    Development of drift chambers and physics simulation for the COMPASS experiment

    Get PDF

    Development of drift chambers and physics simulations for the COMPASS experiment

    Get PDF

    Recommendations for the use of active personal dosemeters (APDs) in interventional workplaces in hospitals

    Get PDF
    Occupational radiation doses from interventional procedures have the potential to be relatively high. The requirement to optimise these doses encourages the use of electronic or active personal dosimeters (APDs) which are now increasingly used in hospitals. They are typically used in tandem with a routine passive dosimetry monitoring programme, with APDs used for real-time readings, for training purposes and when new imaging technology is introduced. However, there are limitations when using APDs. A survey in hospitals to identify issues related to the use of APDs was recently completed, along with an extensive series of APD tests by the EURADOS Working Group 12 on Dosimetry for Medical Imaging. The aim of this review paper is to summarise the state of the art regarding the use of APDs. We also used the results of our survey and our tests to develop a set of recommendations for the use of APDs in the clinical interventional radiology/cardiology settings, and draw attention to some of the current challenges.Peer ReviewedPostprint (published version

    Review of skin dose calculation software in interventional cardiology

    Get PDF
    PurposeIn interventional cardiology, patients may be exposed to high doses to the skin resulting in skin burns following single or multiple procedures. Reviewing and analysing available software (online or offline) may help medical physicists assessing the maximum skin dose to the patient together with the dose distribution during (or after) these procedures.Method and resultsCapabilities and accuracy of available software were analysed through an extensive bibliography search and contacts with both vendor and authors. Their markedly differed among developers. In total, 22 software were identified and reviewed according to their algorithms and their capabilities. Special attention was dedicated to their main features and limitations of interest for the intended clinical use. While the accuracy of the 12 software products validated with measurements on phantoms was acceptable (within ± 25%), the agreement was poor for the two products validated on patients (within ± 43% and ± 76%, respectively). In addition, no software has been validated on angiographic units from all manufacturers, though several software developers claimed vendor-independent transportability. Only one software allows for multiple procedures dose calculation.ConclusionLarge differences among vendors made it clear that work remains to be done before an accurate and reliable skin dose mapping is available for all patients

    Recommendations for the use of active personal dosemeters (APDs) in interventional workplaces in hospitals

    Get PDF
    Occupational radiation doses from interventional procedures have the potential to be relatively high. The requirement to optimise these doses encourages the use of electronic or active personal dosimeters (APDs) which are now increasingly used in hospitals. They are typically used in tandem with a routine passive dosimetry monitoring programme, with APDs used for real-time readings, for training purposes and when new imaging technology is introduced. However, there are limitations when using APDs. A survey in hospitals to identify issues related to the use of APDs was recently completed, along with an extensive series of APD tests by the EURADOS Working Group 12 on Dosimetry for Medical Imaging. The aim of this review paper is to summarise the state of the art regarding the use of APDs. We also used the results of our survey and our tests to develop a set of recommendations for the use of APDs in the clinical interventional radiology/cardiology settings, and draw attention to some of the current challenges

    What Is Worth Knowing in Interventional Practices about Medical Staff Radiation Exposure Monitoring: A Review of Recent Outcomes of EURADOS Working Group 12

    Get PDF
    EURADOS (European Radiation Dosimetry Group) Working Group 12 (WG12) SG1 activities are aimed at occupational radiation protection and individual monitoring in X-ray and nuclear medicine practices. In recent years, many studies have been carried out in these fields, especially for interventional radiology and cardiology workplaces (IC/IR). The complexity of the exposure conditions of the medical staff during interventional practices makes the radiation protection and monitoring of the exposed workers a challenging task. The scope of the present work is to review some of the main results obtained within WG12 activities about scattered field characterization and personal dosimetry that could be very useful in increasing the quality of radiation protection of the personnel, safety, and awareness of radiation risk. Two papers on Monte Carlo modelling of interventional theater and three papers on active personal dosimeters (APDs) for personnel monitoring were considered in the review. More specifically, Monte Carlo simulation was used as the main tool to characterize the levels of exposure of the medical staff, allowing to determine how beam energy and direction can have an impact on the doses received by the operators. Indeed, the simulations provided information about the exposure of the operator’s head, and the study concluded with the determination of an eye-lens protection factor when protection goggles and a ceiling shielding are used. Moreover, the review included the results of studies on active personal dosimeters, their use in IC/IR workplaces, and how they respond to calibration fields, with X-ray standard and pulsed beams. It was shown that APDs are insensitive to backscatter radiation, but some of them could not respond correctly to the very intense pulsed fields (as those next to the patient in interventional practices). The measurements during interventional procedures showed the potential capability of the employment of APDs in hospitals

    VERIDIC: validation and estimation of radiation skin dose in interventional cardiology

    Get PDF
    Interventne procedure u radiologiji i kardiologiji povezani su sa visokim dozama za kožu pacijenta i potencijalnim radijacionim povredama kože. Različita metodologije i rešenja razvijene us za procenu maksimalne doze za kožu, čija se svojsvta, uključujuši i tačnost značajno razlikuju. U radu su prokazani ciljevi, metode i preminiran a rešenja projekta VERIDIC usmerenoj na validaciju zaličitih ofline i online softvera za procenu doze za kožu pacijenta u intervenatnoj kardiologiji.In interventional cardiology (IC), patients may be exposed to high doses to the skin resulting in tissue reactions (skin burns) following single or multiple procedures. To address this issue, online and offline software has been developed to estimate the maximum skin dose (MSD) to the patient from IC procedures. However, the capabilities and accuracy of such skin dose calculation (SDC) software to estimate MSD and 2D dose distributions markedly differ among vendors. Hence, this project focuses onthe harmonisation of RDSR (radiation dose structured report) and on the validation of SDC software products in IC, which will optimise radiation protection of patients. The outcome of the project will include the standards for digital dose reporting, development of protocols for acceptance testing and Quality Control (QC)of SDC software and setting of diagnostic reference levels per clinical complexity, assessing thefrequency of high-dose procedures as well as dose reduction strategies based on the multi-centric data collection. This paper focuses on the work performed to investigate performance of solid state dosimeters used in clinical environment.Proceedings: [http://vinar.vin.bg.ac.rs/handle/123456789/8681]XXX симпозијум ДЗЗСЦГ (Друштва за заштиту од зрачења Србије и Црне Горе), 2- 4. октобар 2019. године, Дивчибаре, Србиј

    Association of Candidate Gene Polymorphisms With Chronic Kidney Disease: Results of a Case-Control Analysis in the Nefrona Cohort

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease, cardiovascular disease and premature death. Despite classical clinical risk factors for CKD and some genetic risk factors have been identified, the residual risk observed in prediction models is still high. Therefore, new risk factors need to be identified in order to better predict the risk of CKD in the population. Here, we analyzed the genetic association of 79 SNPs of proteins associated with mineral metabolism disturbances with CKD in a cohort that includes 2, 445 CKD cases and 559 controls. Genotyping was performed with matrix assisted laser desorption ionizationtime of flight mass spectrometry. We used logistic regression models considering different genetic inheritance models to assess the association of the SNPs with the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616, rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858) were associated with CKD even after adjusting by sex, age and race. A model containing five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359), diabetes and hypertension showed better performance than models considering only clinical risk factors, significantly increasing the area under the curve of the model without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an interaction with hypertension, being the risk genotype affecting only hypertensive patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and 24 hydroxylase) are associated to an increased risk of suffering CKD
    corecore