14 research outputs found

    Electrical resistivity image of the South Atlantic continental margin derived from onshore and offshore magnetotelluric data

    Get PDF
    We present a deep electrical resistivity image from the passive continental margin in Namibia. The approximately 700 km long magnetotelluric profile follows the Walvis Ridge offshore, continues onshore across the Kaoko Mobile Belt and reaches onto the Congo Craton. Two-dimensional inversion reveals moderately resistive material offshore, atypically low for oceanic lithosphere, reaching depths of 15–20 km. Such moderate resistivities are consistent with seismic P wave velocity models, which suggest up to 35 km thick crust. The Neoproterozoic rocks of the Kaoko Mobile Belt are resistive, but NNW-striking major shear-zones are imaged as subvertical, conductive structures in the upper and middle crust. Since the geophysical imprint of the shear zones is intact, opening of the South Atlantic in the Cretaceous did not alter the middle crust. The transition into the cratonic region coincides with a deepening of the high-resistive material to depths of more than 60 km

    Fluid Distribution in the Central Andes Subduction Zone Imaged With Magnetotellurics

    No full text
    We present a model of the electrical resistivity structure of the lithosphere in the Central Andes between 20° and 24°S from 3-D inversion of 56 long-period magnetotelluric sites. Our model shows a complex resistivity structure with significant variability parallel and perpendicular to the trench direction. The continental forearc is characterized mainly by high electrical resistivity (>1,000 Ωm), suggesting overall low volumes of fluids. However, low resistivity zones (LRZs, <5 Ωm) were found in the continental forearc below areas where major trench-parallel faults systems intersect NW-SE transverse faults. Forearc LRZs indicate circulation and accumulation of fluids in highly permeable fault zones. The continental crust along the arc shows three distinctive resistivity domains, which coincide with segmentation in the distribution of volcanoes. The northern domain (20°–20.5°S) is characterized by resistivities >1,000 Ωm and the absence of active volcanism, suggesting the presence of a low-permeability block in the continental crust. The central domain (20.5°–23°S) exhibits a number of LRZs at varying depths, indicating different levels of a magmatic plumbing system. The southern domain (23°–24°S) is characterized by resistivities >1,000 Ωm, suggesting the absence of large magma reservoirs below the volcanic chain at crustal depths. Magma reservoirs located below the base of the crust or in the backarc may fed active volcanism in the southern domain. In the subcontinental mantle, the model exhibits LRZs in the forearc mantle wedge and above clusters of intermediate-depth seismicity, likely related to fluids produced by serpentinization of the mantle and eclogitization of the slab, respectively

    Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae)

    No full text
    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 Όg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental effects of predation rates of mosquito predators, such as C. auratus

    Magnetotelluric 3D inversion - a recapitulation of two successful workshop on forward and inversion code testing and comparison

    No full text
    Over the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to 'production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses obtained from the various forward models are comfortingly very similar, and discrepancies are mainly related to the adopted mesh. For the inversions, the results show how the inversion outcome is affected by distortion and the choice of errors, as well as by the completeness of the data set. We hope that these compilations will become useful not only for those that were involved in the workshops, but for the entire MT community and also the broader geoscience community who may be interested in the resolution offered by MT

    Factors Associated With Highest Symptoms of Anxiety During COVID-19: Cross-Cultural Study of 23 Countries

    No full text
    The COVID-19 restrictions have impacted people's lifestyles in all spheres (social, psychological, political, economic, and others). This study explored which factors affected the level of anxiety during the time of the first wave of COVID-19 and subsequent quarantine in a substantial proportion of 23 countries, included in this study. The data was collected from May to August 2020 (5 June 2020). The sample included 15,375 participants from 23 countries: (seven from Europe: Belarus, Bulgaria, Croatia, Hungary, Italy, Romania, Russia; 11 from West, South and Southeast Asia: Armenia, India, Indonesia, Iran, Iraq, Jordan, Malaysia, Pakistan, Saudi Arabia, Thailand, Turkey; two African: Nigeria and Tanzania; and three from North, South, and Central America: Brazil, Canada, United States). Level of anxiety was measured by means of the 7-item Generalized Anxiety Disorder Scale (GAD-7) and the 20-item first part of The State-Trait Anxiety Inventory (STAI)-State Anxiety Inventory (SAI). Respondents were also asked about their personal experiences with COVID-19, attitudes toward measures introduced by governments, changes in attitudes toward migrants during a pandemic, family income, isolation conditions, etc. The factor analysis revealed that four factors explained 45.08% of variance in increase of anxiety, and these components were interpreted as follows: (1) personal awareness of the threat of COVID-19, (2) personal reaction toward officially undertaken measures and attitudes to foreigners, (3) personal trust in official sources, (4) personal experience with COVID-19. Three out of four factors demonstrated strong associations with both scales of anxiety: high level of anxiety was significantly correlated with high level of personal awareness of the threat of COVID-19, low level of personal reaction toward officially undertaken measures and attitudes to foreigners, and high level of presence of personal experience with COVID-19. Our study revealed significant main effects of sex, country, and all four factors on the level of anxiety. It was demonstrated that countries with higher levels of anxiety assessed the real danger of a pandemic as higher, and had more personal experience with COVID-19. Respondents who trusted the government demonstrated lower levels of anxiety. Finally, foreigners were perceived as the cause of epidemic spread

    Application of 3-D Electromagnetic Inversion in Practice: Challenges, Pitfalls and Solution Approaches

    No full text
    corecore