163 research outputs found

    Magnetic studies of Bi x Y3-x Fe5O12 fabricated using conventional method

    Full text link

    Ecological processes dominate the \u3csup\u3e13\u3c/sup\u3eC land disequilibrium in a Rocky Mountain subalpine forest

    Get PDF
    Fossil fuel combustion has increased atmospheric CO2 by ≈ 115 µmol mol−1 since 1750 and decreased its carbon isotope composition (δ13C) by 1.7–2‰ (the 13C Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the δ13C of CO2released by terrestrial ecosystems is expected to differ from the δ13C of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (δR) and photosynthetic assimilation (δA) fluxes gives rise to the 13C land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (δR \u3e δA). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of δA and δR, and the 13C land disequilibrium, in a subalpine conifer forest. A novel isotopic mixing model was employed to determine the δ13C of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess δA and δR. The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D = −0.75 ± 0.21‰ or −0.88 ± 0.10‰ depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Δcanopy) responding to environmental factors. Possible explanations for negative D include (1) changes in Δcanopy over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil

    Geotechnical Field Reconnaissance: Gorkha (Nepal) Earthquake of April 25, 2015 and Related Shaking Sequence

    Get PDF
    The April 25, 2015 Gorkha (Nepal) Earthquake and its related aftershocks had a devastating impact on Nepal. The earthquake sequence resulted in nearly 9,000 deaths, tens of thousands of injuries, and has left hundreds of thousands of inhabitants homeless. With economic losses estimated at several billion US dollars, the financial impact to Nepal is severe and the rebuilding phase will likely span many years. The Geotechnical Extreme Events Reconnaissance (GEER) Association assembled a reconnaissance team under the leadership of D. Scott Kieffer, Binod Tiwari and Youssef M.A. Hashash to evaluate geotechnical impacts of the April 25, 2015 Gorkha Earthquake and its related aftershocks. The focus of the reconnaissance was on time-sensitive (perishable) data, and the GEER team included a large group of experts in the areas of Geology, Engineering Geology, Seismology, Tectonics, Geotechnical Engineering, Geotechnical Earthquake Engineering, and Civil and Environmental Engineering. The GEER team worked in close collaboration with local and international organizations to document earthquake damage and identify targets for detailed follow up investigations. The overall distribution of damage relative to the April 25, 2015 epicenter indicates significant ground motion directivity, with pronounced damage to the east and comparatively little damage to the west. In the Kathmandu Basin, characteristics of recorded strong ground motion data suggest that a combination of directivity and deep basin effects resulted in significant amplification at a period of approximately five seconds. Along the margins of Kathmandu Basin structural damage and ground failures are more pronounced than in the basin interior, indicating possible basin edge motion amplification. Although modern buildings constructed within the basin generally performed well, local occurrences of heavy damage and collapse of reinforced concrete structures were observed. Ground failures in the basin included cyclic failure of silty clay, lateral spreading and liquefaction. Significant landsliding was triggered over a broad area, with concentrated activity east of the April 25, 2015 epicenter and between Kathmandu and the Nepal-China border. The distribution of concentrated landsliding partially reflects directivity in the ground motion. Several landslides have dammed rivers and many of these features have already been breached. Hydropower is a primary source of electric power in Nepal, and several facilities were damaged due to earthquake-induced landsliding. Powerhouses and penstocks experienced significant damage, and an intake structure currently under construction experienced significant dynamic settlement during the earthquake. Damage to roadways, bridges and retaining structures was also primarily related to landsliding. The greater concentration of infrastructure damage along steep hillsides, ridges and mountain peaks offers a proxy for the occurrence of topographic amplification. The lack of available strong motion records has severely limited the GEER team’s ability to understand how strong motions were distributed and how they correlate to distributions of landsliding, ground failure and infrastructure damage. It is imperative that the engineering and scientific community continues to install strong motion stations so that such data is available for future earthquake events. Such information will benefit the people of Nepal through improved approaches to earthquake resilient design

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Why Tenth Graders Fail to Finish High School: A Dropout Typology Latent Class Analysis

    Get PDF
    A large percentage of the students who drop out of K-12 schools in the United States do so at the end of high school, at some point after grade 10. Yet we know little about the differences between different types of students who drop out of the end of high school. The purpose of this study is to examine a typology of high school dropouts from a large nationally representative dataset (ELS:2002) using latent class analysis (LCA). We found three significantly different types of dropouts; Quiet, Jaded, and Involved. Based on this typology of three subgroups, we discuss implications for future dropout intervention research, policy, and practice

    Owning the problem: Media portrayals of overweight dogs and the shared determinants of the health of human and companion animal populations

    Get PDF
    Weight-related health problems have become a common topic in Western mass media. News-coverage has also extended to overweight pets, particularly since 2003 when the U.S. National Academy of Sciences announced that obesity was also afflicting co-habiting companion animals in record numbers. To characterize and track views in popular circulation on causes, consequences and responsibilities vis-à-vis weight gain and obesity, in pets as well as in people, this study examines portrayals of overweight dogs that appeared from 2000 through 2009 in British, American and Australian mass media. The ethnographic content analysis drew inspiration from the literature in population health, animal-human relationships, communication framing and the active nature of texts in cosmopolitan societies. Three main types of media articles about overweight dogs appeared during this period: 1) reports emphasizing facts and figures; 2) stories emphasizing personal prescriptions for dog owners, and 3) societal critiques. To help ordinary people make sense of canine obesity, media articles often highlight that dogs share the lifestyle of their human companion or owner, yet the implications of shared social and physical environments is rarely considered when it comes to solutions. Instead, media coverage exhorts people who share their lives with overweight dogs to ‘own the problem’ and, with resolve, to normalize their dog’s physical condition by imposing dietary, exercise and relationship changes, thereby individualizing culpability rather than linking it to broader systemic issues. Keywords: Companion animals; Media; Narrative analysis; Obesity; Public understandin

    Stretching the spines of gymnasts: a review

    Get PDF
    Gymnastics is noted for involving highly specialized strength, power, agility and flexibility. Flexibility is perhaps the single greatest discriminator of gymnastics from other sports. The extreme ranges of motion achieved by gymnasts require long periods of training, often occupying more than a decade. Gymnasts also start training at an early age (particularly female gymnasts), and the effect of gymnastics training on these young athletes is poorly understood. One of the concerns of many gymnastics professionals is the training of the spine in hyperextension-the ubiquitous 'arch' seen in many gymnastics positions and movements. Training in spine hyperextension usually begins in early childhood through performance of a skill known as a back-bend. Does practising a back-bend and other hyperextension exercises harm young gymnasts? Current information on spine stretching among gymnasts indicates that, within reason, spine stretching does not appear to be an unusual threat to gymnasts' health. However, the paucity of information demands that further study be undertaken
    corecore