25 research outputs found

    Serendipitous research process

    Get PDF
    This article presents the results of an exploratory study asking faculty in the first-year writing program and instruction librarians about their research process focusing on results specifically related to serendipity. Steps to prepare for serendipity are highlighted as well as a model for incorporating serendipity into a first-year writing course

    Teaching research rhetorically

    Get PDF
    At George Washington University, librarians and faculty have partnered to provide an effective introduction to information literacy to all freshmen. The structure of the new writing program promotes goals that are at the intersection of the Council of Writing Program Administrators and Association of College and Research Libraries. Furthermore, the structure maintains the collaboration and conversation among the two parties, promoting an on-going and evolving relationship

    The Timing of the Research Question: First-Year Writing Faculty and Instruction Librarians‘ Differing Perspectives

    Get PDF
    Faculty and librarians agree on the qualities of a good research question. However, in an exploratory study, they differed on when students should develop their research question. While librarians stated that students should develop their question early, first-year writing faculty advocated for delaying the development of the research question. The timing of the research question is an important issue because it has implications for the structuring of research assignments and library instruction, as well as having an impact on the students who get differing messages

    Optical Design Trade Study for the Wide Field Infrared Survey Telescope [WFIRST]

    Get PDF
    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics mission by the Astro2010 Decadal Survey incorporating the Joint Dark Energy Mission (JDEM)-Omega payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of NWNH, the WFIRST project has been working with the WFIRST science definition team (SDT) to refine mission and payload concepts. We present the driving requirements. The current interim reference mission point design, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slitless spectroscopy science channels, is consistent with the requirements, requires no technology development, and out performs the JDEM-Omega design

    A Dispersive Backend Design for the 'Double-Fourier' Interferometer BETTII

    Get PDF
    BETTII (Balloon Experimental Twin Telescope for Infra-red Interferometry) is designed to provide high angular resolution spectroscopic data in the far-infrared (FIR) wavelengths. The most significant limitation for BETTII is its sensitivity; obtaining spectral signal-to-noise ratio greater than 5 in less than 10 minutes requires sources greater than 13 Janskys (Jy). One possible way to improve the signal-to-noise ratio (SNR) for future BETTII flights is by reducing the spectral bandwidth post beam-combination. This involves using a dispersive element to spread out a polychromatic point source PSF (Point Spread Function) on the detector array, such that each pixel corresponds to a small fraction of the bandwidth. This results in a broader envelope of the interferometric fringe pattern allowing more fringes to be detected, and thereby improving the spectral SNR. Here we present the analysis and optical design of the dispersive backend, discussing the tradeoffs and how it can be combined with the existing design

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): First Flight

    Get PDF
    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter far-infrared (30-100 m) double-Fourier Michelson interferometer designed to fly on a high altitude scientific balloon. The project began in 2011, and the payload was declared ready for flight in September 2016. Due to bad weather, the first flight was postponed until June 2017; BETTII was successfully launched on June 8, 2017 for an engineering flight. Over the course of the one night flight, BETTII acquired a large amount of technical data that we are using to characterize the payload. Unfortunately, the flight ended with an anomaly that resulted in destruction of the payload. In this paper, we will discuss the path to BETTII flight, the results of the first flight, and some of the plans for the future
    corecore