1,073 research outputs found
What One Can Learn From the Cloud Condensation Nuclei (CCN) Size Distributions as Monitored by the BEO Moussala?
In this proceeding we report initial studies into the big data set acquired
by the Cloud Condensation Nuclei (CCN) counter of the Basic Environmental
Observatory (BEO) Moussala over the whole 2016 year at a frequency of 1 Hz.
First, we attempt to reveal correlations between the results for CCN number
concentrations on the timescale of a whole year (2016) as averaged over 12
month periods with the meteorological parameters for the same period and with
the same time step. Then, we zoom into these data and repeat the study on the
timescale of a month for two months from 2016, January and July, with a day
time step. For the same two months we show the CCN size distributions averaged
over day periods. Finally, we arrive at our main result: typical, in terms of
maximal and minimal number concentrations, CCN size distributions for chosen
hours, one hour for each month of the year, hence 24 distributions in total.
These data show a steady pattern of peaks and valleys independent of the
concrete number concentration which moves up and down the number concentrations
(y-axis) without significant shifts along the sizes (x-axis).Comment: 6 pages, 4 figure, The 10th Jubilee Conference of the Balkan Physical
Union (BPU10), 26-30 August, Sofia, Bulgari
An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
Currently, the complete chemical characterization of nanoparticles (<â100ânm) represents an analytical challenge, since these particles are abundant in number but have negligible mass. Several methods for particle-phase characterization have been recently developed to better detect and infer more accurately the sources and fates of sub-100ânm particles, but a detailed comparison of different approaches is missing. Here we report on the chemical composition of secondary organic aerosol (SOA) nanoparticles from experimental studies of α-pinene ozonolysis at â50, â30, and â10ââC and intercompare the results measured by different techniques. The experiments were performed at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). The chemical composition was measured simultaneously by four different techniques: (1) thermal desorptionâdifferential mobility analyzer (TDâDMA) coupled to a NO chemical ionizationâatmospheric-pressure-interfaceâtime-of-flight (CIâAPiâTOF) mass spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an I high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS), (3) extractive electrospray Na ionization time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC) and heated electrospray ionization (HESI) coupled to an Orbitrap high-resolution mass spectrometer (HRMS). Intercomparison was performed by contrasting the observed chemical composition as a function of oxidation state and carbon number, by estimating the volatility and comparing the fraction of volatility classes, and by comparing the thermal desorption behavior (for the thermal desorption techniques: TDâDMA and FIGAERO) and performing positive matrix factorization (PMF) analysis for the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences: thermal decomposition, aging, sampling artifacts, etc. We applied PMF analysis and found insights of thermal decomposition in the TDâDMA and the FIGAERO
ĂCoreper EnlargedĂ: how Enlargement Affected the Functioning of the Committee of Permanent Representatives
Before enlargement, many experts expected that the functioning of most EU institutions would be severely affected by the accession of the ten new member states in 2004. Compared to these expectations, effects that actually occurred were relatively moderate. Especially in the Committee of Permanent Representatives, enlargement took place smoothly and without major disturbances. However, some changes are noticeable. The paper analyses the way how enlargement influenced the functioning of Coreper. The analysis is based on 41 qualitative interviews with experts from the Council General Secretariat and from Permanent Representations from both ĂoldĂ and ĂnewĂ member states.Council of Ministers, Coreper, Permanent Representations, enlargement, informality, committee governance
Direct Observation of Quantum Coherence in Single-Molecule Magnets
Direct evidence of quantum coherence in a single-molecule magnet in frozen
solution is reported with coherence times as long as T2 = 630 ns. We can
strongly increase the coherence time by modifying the matrix in which the
single-molecule magnets are embedded. The electron spins are coupled to the
proton nuclear spins of both the molecule itself and interestingly, also to
those of the solvent. The clear observation of Rabi oscillations indicates that
we can manipulate the spin coherently, an essential prerequisite for performing
quantum computations.Comment: 5 Pages, 4 Figures, final version published in PR
Role of sesquiterpenes in biogenic new particle formation
Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight. Via chamber experiments performed under atmospheric conditions, we report biogenic NPF resulting from the oxidation of pure mixtures of ÎČ-caryophyllene, α-pinene, and isoprene, which produces oxygenated compounds over a wide range of volatilities. We find that a class of vapors termed ultralow-volatility organic compounds (ULVOCs) are highly efficient nucleators and quantitatively determine NPF efficiency. When compared with a mixture of isoprene and monoterpene alone, adding only 2% sesquiterpene increases the ULVOC yield and doubles the formation rate. Thus, sesquiterpene emissions need to be included in assessments of global aerosol concentrations in pristine climates where biogenic NPF is expected to be a major source of cloud condensation nuclei
Soil aggregation dynamics and carbon sequestration
The quantity and quality of residues determine the formation and stabilization of aggregate structure for soil organic carbon (SOC) sequestration. Plant roots and residues are the primary organic skeleton to enmesh the inorganic particles together and build macro- and microaggregates while sequestering SOC. There are three major organic binding agents of aggregation: temporary (plant roots, fungal hyphae, and bacterial cells), transient (polysaccharides), and persistent (humic compounds and polymers). Conversion of natural ecosystems into agricultural lands for intensive cultivation severely depletes SOC pools. Magnitude of SOC sequestration in the soil system depends on the residence time of SOC in aggregates. Microaggregates are bound to old organic C, whereas macroaggregates contain younger organic material. Many techniques have been used to assess the SOC distribution in aggregates. Classical methods include SOC determination in aggregate fractions by wet and dry sieving of bulk soil. Isotopic methods including the determination of 13C and 14C with mass spectrometry are techniques to quantify the turnover and storage of organic materials in soil aggregates. Other techniques involve the use of computed tomography, X-ray scattering, and X-ray microscopy to examine the internal porosity and interaggregate attributes of macro- and microaggregates. Current state-of-knowledge has not unravelled completely the underlying complex processes involved in the sequestration, stability, dynamics, and residence times of SOC in macro- and microaggregates. There is a need to develop a unique conceptual model of aggregate hierarchy
Recommended from our members
High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOxeffect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements
- âŠ