17 research outputs found

    Structural Congruency of Ligand Binding to the Insulin and Insulin/Type 1 Insulin-like Growth Factor Hybrid Receptors

    Get PDF
    SummaryThe homodimeric insulin and type 1 insulin-like growth factor receptors (IR and IGF-1R) share a common architecture and each can bind all three ligands within the family: insulin and insulin-like growth factors I and II (IGF-I and IFG-II). The receptor monomers also assemble as heterodimers, the primary ligand-binding sites of which each comprise the first leucine-rich repeat domain (L1) of one receptor type and an α-chain C-terminal segment (αCT) of the second receptor type. We present here crystal structures of IGF-I bound to such a hybrid primary binding site and of a ligand-free version of an IR αCT peptide bound to an IR L1 plus cysteine-rich domain construct (IR310.T). These structures, refined at 3.0-Å resolution, prove congruent to respective existing structures of insulin-complexed IR310.T and the intact apo-IR ectodomain. As such, they provide key missing links in the emerging, but sparse, repertoire of structures defining the receptor family

    Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY

    Get PDF
    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr(B26)) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr(B26)]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (Tyr(B16), Phe(B24), Phe(B25), 3-I-Tyr(B26), and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-Tyr(B26)]insulin analog (determined as an R6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-Tyr(B26) in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-Tyr(B26) engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins

    Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity

    Get PDF
    The structural transitions required for insulin to activate its receptor and initiate regulation of glucose homeostasis are only partly understood. Here, using ring-closing metathesis, we substitute the A6-A11 disulfide bond of insulin with a rigid, non-reducible dicarba linkage, yielding two distinct stereo-isomers (cis and trans). Remarkably, only the cis isomer displays full insulin potency, rapidly lowering blood glucose in mice (even under insulin-resistant conditions). It also posseses reduced mitogenic activity in vitro. Further biophysical, crystallographic and molecular-dynamics analyses reveal that the A6-A11 bond configuration directly affects the conformational flexibility of insulin A-chain N-terminal helix, dictating insulin's ability to engage its receptor. We reveal that in native insulin, contraction of the Cα-Cα distance of the flexible A6-A11 cystine allows the A-chain N-terminal helix to unwind to a conformation that allows receptor engagement. This motion is also permitted in the cis isomer, with its shorter Cα-Cα distance, but prevented in the extended trans analogue. These findings thus illuminate for the first time the allosteric role of the A6-A11 bond in mediating the transition of the hormone to an active conformation, significantly advancing our understanding of insulin action and opening up new avenues for the design of improved therapeutic analogues.A.J.R., B.E.F. and M.C.L. acknowledge funding from National Health and Medical Research Council (Project Grant APP1069328 and Project Grant APP1058233) and Australian Research Council. Te Walter and Eliza Hall Institute of Medical Research acknowledges Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS

    How ligand binds to the type 1 insulin-like growth factor receptor

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

    Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.The structural transitions required for insulin to activate its receptor and initiate regulation of glucose homeostasis are only partly understood. Here, using ring-closing metathesis, we substitute the A6-A11 disulfide bond of insulin with a rigid, non-reducible dicarba linkage, yielding two distinct stereo-isomers (cis and trans). Remarkably, only the cis isomer displays full insulin potency, rapidly lowering blood glucose in mice (even under insulin-resistant conditions). It also posseses reduced mitogenic activity in vitro. Further biophysical, crystallographic and molecular-dynamics analyses reveal that the A6-A11 bond configuration directly affects the conformational flexibility of insulin A-chain N-terminal helix, dictating insulin’s ability to engage its receptor. We reveal that in native insulin, contraction of the Cα-Cα distance of the flexible A6-A11 cystine allows the A-chain N-terminal helix to unwind to a conformation that allows receptor engagement. This motion is also permitted in the cis isomer, with its shorter Cα-Cα distance, but prevented in the extended trans analogue. These findings thus illuminate for the first time the allosteric role of the A6-A11 bond in mediating the transition of the hormone to an active conformation, significantly advancing our understanding of insulin action and opening up new avenues for the design of improved therapeutic analogues

    Single-chain insulin analogs threaded by the insulin receptor αCT domain

    No full text
    Insulin is a mainstay of therapy for diabetes mellitus, yet its thermal stability complicates global transportation and storage. Cold-chain transport, coupled with optimized formulation and materials, prevents to some degree nucleation of amyloid and hence inactivation of hormonal activity. These issues hence motivate the design of analogs with increased stability, with a promising approach being single-chain insulins (SCIs), whose C domains (foreshortened relative to proinsulin) resemble those of the single-chain growth factors (IGFs). We have previously demonstrated that optimized SCIs can exhibit native-like hormonal activity with enhanced thermal stability and marked resistance to fibrillation. Here, we describe the crystal structure of an ultrastable SCI (C-domain length 6; sequence EEGPRR) bound to modules of the insulin receptor (IR) ectodomain (N-terminal α-subunit domains L1-CR and C-terminal αCT peptide; "microreceptor" [ÎŒIR]). The structure of the SCI-ÎŒIR complex, stabilized by an Fv module, was determined using diffraction data to a resolution of 2.6 Å. Remarkably, the αCT peptide (IR-A isoform) "threads" through a gap between the flexible C domain and the insulin core. To explore such threading, we undertook molecular dynamics simulations to 1) compare threaded with unthreaded binding modes and 2) evaluate effects of C-domain length on these alternate modes. The simulations (employing both conventional and enhanced sampling simulations) provide evidence that very short linkers (C-domain length of -1) would limit gap opening in the SCI and so impair threading. We envisage that analogous threading occurs in the intact SCI-IR complex-rationalizing why minimal C-domain lengths block complete activity-and might be exploited to design novel receptor-isoform-specific analogs

    How insulin-like growth factor I binds to a hybrid insulin receptor type 1 insulin-like growth factor receptor.

    No full text
    Monomers of the insulin receptor and type 1 insulin-like growth factor receptor (IGF-1R) can combine stochastically to form heterodimeric hybrid receptors. These hybrid receptors display ligand binding and signaling properties that differ from those of the homodimeric receptors. Here, we describe the cryoelectron microscopy structure of such a hybrid receptor in complex with insulin-like growth factor I (IGF-I). The structure (ca. 3.7 Å resolution) displays a single IGF-I ligand, bound in a similar fashion to that seen for IGFs in complex with IGF-1R. The IGF-I ligand engages the first leucine-rich-repeat domain and cysteine-rich region of the IGF-1R monomer (rather than those of the insulin receptor monomer), consistent with the determinants for IGF binding residing in the IGF-1R cysteine-rich region. The structure broadens our understanding of this receptor family and assists in delineating the key structural motifs involved in binding their respective ligands
    corecore