184 research outputs found

    Gate Control Theory and its Application in a Physical Intervention to Reduce Children\u27s Pain during Immunization Injections

    Get PDF
    Vaccinations provide protection against deadly diseases and children are scheduled to receive many immunization injections before the age of six. However, painful procedures, such as immunizations cause negative short- and long-term consequences for children. The Gate Control Theory of Pain suggests that physical interventions may be helpful, but they have not yet been validated as an effective intervention to manage children’s acute pain. This randomized trial examined the effectiveness of the ShotBlocker®, a physical intervention designed to decrease children’s injection pain, in a sample of 89 4- to 12- year-old children receiving immunizations at a pediatric practice. An ANOVA revealed no significant effect of treatment group (Typical Care Control, Placebo, and ShotBlocker®) on any measure of child distress. Clinical and theoretical implications are discussed

    Comparison of numerical models for Acoustic Emission propagation

    Get PDF
    Abstract Acoustic Emissions (AE) are at the basis of extremely accurate and reliable monitoring systems. Within the SmartBench project, data regarding structural health of components are gathered in a database in order to make safety integrated, operative and smart. An accurate modelling of wave propagation is a necessary requirement for a proper design of sensor networks as well as for data interpretation. Numerical simulations of the transient behavior of structural systems are well-established in this field but, on the minus side, they are very expensive in terms of computational time and resources. This paper reports different instances of AE propagation through metallic media. Bulk waves and guided waves are both investigated by means of 2D and 3D models and resorting to different software. Obtained results are cross-checked and computational times are compared as well. As a last point, High Performance Computing is applied to the case of waves simulation in order to get a significant reduction of the required computational time

    Prediction of functional recovery in patients with chronic coronary artery disease and left ventricular dysfunction combining the evaluation of myocardial perfusion and contractile reserve using nitrate-enhanced technetium-99m Sestamibi gated single-photon emission computed tomography and dobutamine stress.

    Get PDF

    Comparison of baseline and low-dose dobutamine technetium-99m sestamibi scintigraphy with low-dose dobutamine echocardiography for predicting functional recovery after revascularization.

    Get PDF

    Advanced Video-Based Processing for Low-Cost Damage Assessment of Buildings under Seismic Loading in Shaking Table Tests

    Get PDF
    This paper explores the potential of a low-cost, advanced video-based technique for the assessment of structural damage to buildings caused by seismic loading. A low-cost, high-speed video camera was utilized for the motion magnification processing of footage of a two-story reinforced-concrete frame building subjected to shaking table tests. The damage after seismic loading was estimated by analyzing the dynamic behavior (i.e., modal parameters) and the structural deformations of the building in magnified videos. The results using the motion magnification procedure were compared for validation of the method of the damage assessment obtained through analyses of conventional accelerometric sensors and high-precision optical markers tracked using a passive 3D motion capture system. In addition, 3D laser scanning to obtain an accurate survey of the building geometry before and after the seismic tests was carried out. In particular, accelerometric recordings were also processed and analyzed using several stationary and nonstationary signal processing techniques with the aim of analyzing the linear behavior of the undamaged structure and the nonlinear structural behavior during damaging shaking table tests. The proposed procedure based on the analysis of magnified videos provided an accurate estimate of the main modal frequency and the damage location through the analysis of the modal shapes, which were confirmed using advanced analyses of the accelerometric data. Consequently, the main novelty of the study was the highlighting of a simple procedure with high potential for the extraction and analysis of modal parameters, with a special focus on the analysis of the modal shape's curvature, which provides accurate information on the location of the damage in a structure, while using a noncontact and low-cost method

    Advanced Video-Based Processing for Low-Cost Damage Assessment of Buildings under Seismic Loading in Shaking Table Tests

    Get PDF
    This paper explores the potential of a low-cost, advanced video-based technique for the assessment of structural damage to buildings caused by seismic loading. A low-cost, high-speed video camera was utilized for the motion magnification processing of footage of a two-story reinforcedconcrete frame building subjected to shaking table tests. The damage after seismic loading was estimated by analyzing the dynamic behavior (i.e., modal parameters) and the structural deformations of the building in magnified videos. The results using the motion magnification procedure were compared for validation of the method of the damage assessment obtained through analyses of conventional accelerometric sensors and high-precision optical markers tracked using a passive 3D motion capture system. In addition, 3D laser scanning to obtain an accurate survey of the building geometry before and after the seismic tests was carried out. In particular, accelerometric recordings were also processed and analyzed using several stationary and nonstationary signal processing techniques with the aim of analyzing the linear behavior of the undamaged structure and the nonlinear structural behavior during damaging shaking table tests. The proposed procedure based on the analysis of magnified videos provided an accurate estimate of the main modal frequency and the damage location through the analysis of the modal shapes, which were confirmed using advanced analyses of the accelerometric data. Consequently, the main novelty of the study was the highlighting of a simple procedure with high potential for the extraction and analysis of modal parameters, with a special focus on the analysis of the modal shape’s curvature, which provides accurate information on the location of the damage in a structure, while using a noncontact and low-cost method
    • …
    corecore