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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

Acoustic Emissions (AE) are at the basis of extremely accurate and reliable monitoring systems. Within the SmartBench project, 
data regarding structural health of components are gathered in a database in order to make safety integrated, operative and smart. 
An accurate modelling  of wave propagation  is a necessary requirement for a proper design of sensor networks as well as for 
data interpretation. Numerical simulations of the transient behavior of  structural systems are well-established in this field but, on 
the minus side, they are very expensive in terms of computational time and resources. This paper reports different instances of 
AE propagation through metallic media. Bulk waves and guided waves are both investigated by means of 2D and 3D models and 
resorting to different software. Obtained results are cross-checked and computational times are compared as well. As a last point, 
High Performance Computing is applied to the case of waves simulation in order to get a significant reduction of the required 
computational time. 
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1. Introduction 

Ultrasonic guided waves (UGW) turned out to be an effective way for nondestructive evaluation (NDE) and 
structural health monitoring (SHM) of the structures acting as waveguides. They bring undeniable advantages with 
respect to bulk waves, such as a wider inspection capability and a major versatility. Their action is particularly 
appreciated for the scanning of beam-like or plate-like structures such as pipes, railroad tracks or laminates, as in the 
works by Lowe et al. (1998) and Leckey et al. (2018). Whether bulk waves or guided waves propagate in a medium 
depends upon the ratio of the wavelength on the domain dimensions, as described in Rose (2014). When wavelength 
is greater than the structural thickness, boundaries play a fundamental role and guided waves are generated. 
Otherwise waves behave as in an infinite medium, leading to bulk waves. Structural assessment by means of UGW 
can take advantage of two different phenomena, both involving waves propagation. The first is due to the reflection 
and modification of an induced signal when it encounters a flaw. The second relies on the spontaneous emission of 
acoustic vibrations at the onset or during the evolution of a crack. On the minus side, UGW present a dispersive 
behavior which needs to be fully understood in order to exploit their advantages. The effect of dispersion is due to 
the dependency of the phase velocity on frequency and the existence of different modes. Each mode is characterized 
by its own dispersion curve and a single excitation frequency can involve multiple modes. A former work by Gavrić 
(1994) deals with a method for the computation of dispersion curves of thin-walled structures (such as cylinders or 
beams of I-shaped cross sections) based on finite elements (FE). The FE models are built with proper shell elements. 
In a subsequent paper by the same Gavrić (1995), the same approach is applied to solid waveguides. It requires a FE 
discretization of the cross-section of the waveguide alone while an analytical form is assumed for the displacement 
field along the propagation direction (semi-analytical finite element method). The method is there employed for the 
case of a free rail. In a paper by Wilcox et al. (2002), a smart way is proposed to apply the technique presented by 
Gavrić: dispersion curves for an arbitrary cross-section can be worked out resorting to a FE package allowing cyclic 
symmetry. The so-called semi-analytical finite element (SAFE) method demonstrated its effectiveness to catch the 
transmission features of dispersive solid media. A recent upgrade of this approach is presented by Bartoli et al. 
(2006). Accordingly to previous works, the SAFE method assumes the periodicity of the wave propagation along the 
guide. Damping effects are kept into account with a complex form for the stiffness matrix. Instances of the proposed 
method are presented, including viscoelastic anisotropic media and laminates. In a work by Marzani et al. (2008) the 
SAFE method is extended to axisymmetric waveguides with damping. Cylindrical coordinates are introduced in 
order to adopt a mono-dimensional approach for discretization. The semi-analytical method is a useful tool to 
characterize the propagative and evanescent modes in waveguides but it does not give any information on the  
waveforms or on the displacement scenario at a given moment of time. If such knowledge is sought, a transient FE 
analysis is still the unique choice, as presented by Bartoli et al. (2005). This last paper reports an interesting study on 
the use of guided waves for defect detection in railroads tracks. Numerical results obtained by ABAQUS EXPLICIT 
are found in good agreement with the experimental ones. As a preliminary step, a theoretical test-case is employed to 
validate the existing guidelines for the spatial and temporal discretization. A FE technique to model guided waves 
propagation is described by Moser et al. (1999). The analytical solution for the case of a flat plate is used as a 
benchmark to prove the soundness of the numerical approach. A thick ring is studied as a waveguide and the results 
are validated against theoretical considerations. Further checks come from the comparison with the mode 
superimposition method and experimental  waveforms. The work presented by Leckley (2018) reports a cross-check 
of results obtained by different software for guided-wave propagation in a laminate composite. A delamination flaw 
is considered and experimental data are compared to numerical simulations: ABAQUS, ANSYS, COMSOL and an 
in-house code are employed for the case. In general a good matching is observed, but important differences arise in 
terms of computational running time, with COMSOL outperforming the other tested software. 

The Smartbench project (www.smartbench-project.it)  involves different Italian partners: the University of Rome 
“Tor Vergata”, the University “Campus Bio-Medico” of Rome, the University of Bologna UNIBO, the University of 
Salento and the University of Messina as academic foundations. INAIL, the Italian public body of job insurance, 
rounds out the group. The overall goal of the project is to introduce a technological change in job security in an 
integrated fashion. Different tools must be synchronized to this end: networks of Acoustic Emissions (AE) sensors 
for a continuous monitoring of the structural health of components, smart tags to manage work equipment and 
facilities, virtual simulation of ageing of structures, and internet of things (IOT) to assess the personnel health state 
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and the proper use of the protective equipment. The present work focuses on the AE topic: it reports a comparison of 
results of FE analyses simulating ultrasonic waves propagation. Three commercial codes: COMSOL, ANSYS APDL 
and FEMAP with NX NASTRAN are compared for the purpose. Several instances are considered: bulk and guided 
waves propagation in 2D models and the dispersive behavior of a 3D plate. 

 
Nomenclature 

be edge of the element of the numerical grid  
cg  group velocity of the wave packet at a given frequency 
cph phase velocity of the wave at a given frequency 
cL velocity of  longitudinal bulk waves 
cT velocity of shear bulk waves 
d generic distance 
f frequency 
h half thickness of the plate of the Lamb problem 
k wavenumber 
L numerical domain edge 
p first parameter of the Lamb problem 
q second parameter of the Lamb problem 
t generic time instant 
Δt time step used for numerical integration 
λ wavelength 
ω circular frequency 

2. Numerical tests 

The present section reports the FE settings and the results obtained for scenarios of increasing complexity of 
ultrasonic wave propagation. The numerical simulation tools employed in this study are three widely used 
commercial FE codes: COMSOL, ANSYS APDL and FEMAP with NX NASTRAN. Theoretical considerations are 
reported in each dedicated sub-section, introducing propagation velocities to assess numerical results. In this work 
different dimensionalities of the propagation domains are investigated: a 2D model under the assumption of plane 
strain is considered for both bulk and guided waves, a fully 3D scenario is employed for guided waves only. All the 
considered codes rely on an implicit integration algorithm to solve the transient problem: Generalized-α for 
COMSOL, the Newmark algorithm for APDL and an approach similar to the Newmark-Beta method for NX 
NASTRAN. Unless otherwise specified, the reported running times are for a Dell Precision T5810 with a 3.50 GHz 
processor, 48.0 GB of RAM and 6 working cores. 

2.1. Bulk waves propagation in a 2D domain 

The first comparison involves the propagation of bulk waves. For this purpose, a proper domain is considered. A 
thick block of steel is modelled in 2D thanks to the assumption of plane strain. The material properties are the 
following: 

 
 Young’s modulus E = 209 GPa 
 Poisson’s ratio = 0.3 
 Density ρ = 7800 Kg/m3  

 
The associated bulk propagation presents longitudinal wave velocity cL = 6005.8 m/s and shear wave velocity    

cT = 3210.3  m/s. Damping effects are neglected, a unitary thickness is chosen for the model. The whole domain is 
assumed to be a rectangle with stress-free boundaries, stimulated by a time-dependent force acting orthogonal at the 
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midpoint of its upper edge. Given the symmetry, only one half of the rectangle is modelled. The simulation domain 
is thus a square with a force acting at its upper-left vertex and a symmetry constraint along its left edge. The 
symmetry constraint just prescribes a zero motion normal to the considered edge. The force employed to start wave 
propagation has a prescribed evolution in time, which is reported in Fig. 1. It is a sine function with frequency             
f0 = 50kHz, windowed by a Hann function with non-zero interval from t = 0 to tHann = 8 10-5 s. The simulations are 
run from t = 0 to tend = 4 10-4 s. Given the bulk wave velocities and the frequency of the forcing function, the 
wavelengths of longitudinal and shear waves are λL = cL/ f0 = 0.12 m and λT = cT/ f0 = 0.064 m respectively. The 
edge L of the square domain is chosen to be 10 times λL, L = 10 λL = 1.2 m. 

A critical aspect when dealing with numerical models is discretization, both temporal and spatial. In the case of 
ultrasonic waves simulation, this is even more true. In a paper by Bartoli et al. (2005), it is stated that the size of the 
finite element be should be tuned on the smallest wavelength to be analyzed λmin. A spatial resolution from a 
minimum of 10 to a maximum of 20 nodes per wavelength is recommended. 

min min

10 20eb 
                      (1) 

As regards the time step Δt, the most stringent condition between (2) and (3) should be employed, being fmax the 
maximum frequency of the dynamic problem. 

,mine

L

b
t

c
                         (2) 

max

1
20

t
f

 


                    (3) 

In a work by Moser et al. (1999) the upper limit of 20 subdivisions in (1) is said to be too strict and it is shown 
that spatial discretization is less critical than time stepping. In Leckley (2018) a discretization of just 8 nodes per 
wavelength is found satisfactory, while it is introduced a Courant number of 0.58 multiplying the right term in (2). It 
seems reasonable that each software requires a proper discretization in order to work at best, some trials being 
necessary to find this tuning. For the present case of bulk propagation, several settings were tried with three different 
commercial FE codes: COMSOL, ANSYS APDL and FEMAP with NX NASTRAN. An easy and practical way to 
assess the numerical results is to check propagation velocities. Waves are generated at a given point in the material, 
a probe placed at a certain distance receives a signal after a time which is determined by the distance to velocity 
ratio. Requested output of each numerical analysis is the displacement over time of the center point of the square 
domain, at a distance d = 0.85 m from the trigger site. As stated before, the excitation force acts in the interval of the 
Hann window, being zero outside. The arrival of longitudinal waves travelling the straight path to the probe is 
restricted to the  interval [t1L t2L]: 

4
1 1.414 10L

L

dt
c

    s   

(4) 

4
2 2.214 10L Hann

L

dt t
c

     s                  
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Analogously, for shear waves we use the bulk shear velocity to compute the interval  [t1T  t2T]: 

4
1 2.646 10T

T

dt
c

    s   

(5) 

4
2 3.446 10T Hann

T

dt t
c

     s                  

These bounds allow to have a check of the soundness of numerical results. Since different recommendations can 
be found in literature as regards discretization, we started with the stricter conditions given by (1), taking 20 nodes 
per wavelength, and (2), with a Courant number of 0.25 multiplying the right hand side. These guidelines yield to   
be = 0.0032 m and Δt = 1.33 10-7 s. The domain was discretized by 4-node bilinear square elements. Fig. 2 reports 
the components of displacement for the probe over time, obtained by COMSOL, APDL and FEMAP. The red and 
green lines represent the time bounds for the arrival of longitudinal and tangential waves given by (4) and (5). 
Oscillations crossing the second green line are due to waves bouncing back from the boundaries. All the commercial 
codes gave similar results, fulfilling the check of velocities. 

The coarser spatial discretization given by 10 nodes per wavelength was also tried. The integration time step 
came consequently from (2), the Courant number was still 0.25, yielding to be = 0.0064 m and Δt = 2.66 10-7 s. In 
this second case, COMSOL showed a numerical anomaly: the arrival of tangential waves was anticipated in time, as 
reported in Fig. 3. APDL and FEMAP still respected the check of velocities. The separate study of spatial and 
temporal discretization showed that they offset each other. A coarser mesh anticipates the arrival of the waves, a 
larger time step introduces a delay. This suggests that a proportionality should be kept between the spatial and 
temporal paces. Former tests are repeated, the Courant number is set unitary so that Δt is exactly the one reported in 
(2), the discretization paces are be = 0.0064 m and Δt = 1 10-6 s. In Fig. 4, the probe displacements obtained in this 
second case. As regards COMSOL, anticipation of tangential waves is still present nonetheless its effect is less 
evident than before. Oscillations obtained with APDL are centered in the expected intervals, a delay can be noticed 
for the longitudinal waves reproduced by FEMAP. A larger time step was not tried because it would not have 
respected the Nyquist criterion in (3) with the given tolerance. Tables Table 1 and Table 2 reports the analyses 
parameters and running times for both the presented cases of discretization. 
 

Fig. 1. Evolution over time of the forcing function. 
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a b 
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Fig. 2. Results of the first set of simulations for the 2D bulk case: (a) COMSOL; (b) APDL; (c) FEMAP. 

 
 
 
 

          Table 1. First set of simulations for the 2D bulk case: analysis parameters and running times. 

Employed code Element edge [m] 

be 

Time step [s] 

Δt 

Number of elements Running time [s] 

COMSOL 3.2 10-3 1.33 10-7 140625 1339 

APDL 3.2 10-3 1.33 10-7 141376 2600 

FEMAP 3.2 10-3 1.33 10-7 139876 3279 
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Fig. 3. Results of the second set of simulations for the 2D bulk case: (a) COMSOL; (b) APDL; (c) FEMAP. 

 
 
 
 

           Table 2. Third set of simulations for the 2D bulk case: analysis parameters and running times. 

Employed code Element edge [m] 

be 

Time step [s] 

Δt 

Number of elements Running time [s] 

COMSOL 6.4 10-3 1 10-6 35344 44 

APDL 6.4 10-3 1 10-6 35344 91 

FEMAP 6.4 10-3 1 10-6 35344 375 
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Fig. 4. Results of the third set of simulations for the 2D bulk case: (a) COMSOL; (b) APDL; (c) FEMAP. 

 

2.2. Guided waves propagation in a 2D domain 

As reported in the introduction, the physics of UGW is definitely more complex than that of bulk waves. The 
velocities of UGW depend upon the geometry of the waveguide while several modes can be involved. Transmission 
of waves travelling in a thin plate of isotropic material, with stress-free boundaries under the assumption of plane 
strain is the classical problem of Lamb waves propagation. The well-known Rayleigh-Lamb solutions of Lamb 
waves can be found in Rose (2014): 

 
   

2

22 2

tan 4
tan

qh k pq
ph q k

 


 for the symmetric modes   

(6) 

 
 

 22 2

2

tan
tan 4

q kqh
ph k pq


  for the anti-symmetric modes                

where k is the wavenumber, 2h is the plate thickness. 
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The parameters p and q derive from the circular frequency ω, the wavenumber k and the aforementioned bulk 
velocities: 

2
2 2

L

p k
c
 

  
 

   

and                     (7) 

2
2 2

T

q k
c
 

  
 

                

If waves characteristics are sought for a generic cross-section of the waveguide, no analytical solution exists, 
justifying the recourse to semi-analytical or numerical methods. In this work the tool Guiguw (available at 
www.guiguw.com) was employed for the purpose. It is a software able to supply the dispersion curves for both the 
Lamb waves problem and for a generic cross-section waveguide. The SAFE method, described by Bartoli et al. 
(2006), constitutes its working core.  

The case under consideration perfectly matches the Lamb problem requirements. It is the first example 
considered in a work by Bartoli et al. (2005). It is a 2D thin plate, 3 m long and 2 cm thick, supposed infinite along 
the wideness with traction-free upper and lower surfaces. An ultrasonic excitation occurs at one edge of the plate in 
the form of an impulsive displacement along the length, for a duration of 20 𝜇𝜇s, as represented in Fig. 5a. The 
amplitude spectrum of the impulse is reported in Fig. 5b. It shows that the upper bound of the frequency range of 
interest can be placed at 100 kHz. Dispersion curves obtained by Guiguw (Fig. 6) reveal that in the considered 
frequency interval, only zero-order symmetric mode S0 and anti-symmetric mode A0 are present. The starting push 
excites the plate in a symmetrical manner with respect to its longitudinal mid-plane, thus only the symmetric mode 
propagation S0 is activated (black curve). The material is steel, the same previously considered. As a first attempt, 
the discretization given in referenced paper was tried, the package used in the cited work was ABAQUS EXPLICIT. 
Under the assumption of plane strain, 4-nodes square elements with edge be =  10 mm were considered. The 
integration time step was set to Δt = 2 10-7 s. The observation of Lamb dispersion curves revealed that, in the 
frequency interval of interest, the phase velocity of symmetric waves ranges from cph,1 = 5459 m/s for a near-zero 
frequency to cph,2 = 4942 m/s for a frequency of 100 kHz. Dealing with guided waves, it is correct to consider group 
velocities. The group velocity is the propagation velocity of a group of waves of similar frequency. It is associated 
with the motion of the waves packets or envelopes. In the considered zone of the graph, the group velocity decreases 
from cg,1 = 5394 m/s to cg,2 = 3489 m/s, the wavelength shifts from λ1 = 545.9 m at 0 kHz, to λ2 = 0.049 m at 100 
kHz. The variable monitored was the longitudinal displacement of the node at the mid-span of the top surface, at a 
distance d = 1.5 m from the stimulated edge. The simulations were run from t = 0 to tend = 1.3 10-3 s. The arrival 
window [t1 t2] is evaluated according to the considerations valid also for bulk waves, when the group 
velocities are considered: 

4
1

,1

2.781 10
g

dt
c

    s   

(8) 

  4
2

,2

20 μs 4.499 10
g

dt
c

     s                  

Fig. 7 reports the displacement over time for the selected node obtained by COMSOL, APDL and FEMAP. 
COMSOL and APDL slightly anticipated the arrival of symmetric waves with a negative peak of the displacement 



362	 A. Chiappa  et al. / Procedia Structural Integrity 12 (2018) 353–369
10 Chiappa et al. / Structural Integrity Procedia  00 (2018) 000–000 

just before the red line, showing a similar shape of the oscillations. The signal reported by FEMAP is better centered 
in the expected interval and its shape is much more similar to that shown in the referenced literature. The second 
oscillation which appears in the figures is due to the reflection from the right-end of the plate. The numerical tests 
were repeated with a different spatial and temporal resolutions. The guidelines found for the bulk case were applied 
also for the instance of guided waves. It was found that a proportionality should hold between the spatial and the 
time steps. The interval reported in (1) is well balanced by the time pace given in (2) with unitary Courant number. 
A discretization of 20 nodes per wavelength was adopted since: 

 
i) its related time step satisfies the Nyquist criterion given in (3) 
ii) the area to be meshed had a small extent 

 
For the second set of numerical analyses the parameters be =  λ2/20  0.0025 m, Δt = be/cg,1 = 4.6 10-7 s were 

employed. Fig. 8 reports the monitored displacement obtained by COMSOL, APDL and FEMAP for the last 
introduced discretization. All the curves appear similar and the peaks are well centered in the expected interval. 
Tables Table 3 and Table 4 summarize the parameters of interest of the discussed analyses and the related running 
times. 
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Fig. 5. (a) Displacement over time of the impulse; (b) frequency spectrum of the impulse. 

 
 

Fig. 6. Group velocity vs frequency for the 2D guided propagation problem. 
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Fig. 7. Results of the first set of simulations for the 2D guided propagation case: (a) COMSOL; (b) APDL; (c) FEMAP. 

 

 
 
 

           Table 3. First set of simulations for the 2D guided propagation case: analysis parameters and running times. 

Employed code Element edge [m] 

be 

Time step [s] 

Δt 

Number of elements Running time [s] 

COMSOL 10 10-3 2 10-7 600 32 

APDL 10 10-3 2 10-7 600 64 

FEMAP 10 10-3 2 10-7 600 5 
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Fig. 8. Results of the second set of simulations for the 2D guided propagation case: (a) COMSOL; (b) APDL; (c) FEMAP. 

 

 
 
 

           Table 4. Second set of simulations for the 2D guided propagation case: analysis parameters and running times. 

Employed code Element edge [m] 

be 

Time step [s] 

Δt 

Number of elements Running time [s] 

COMSOL 2.5 10-3 4.6 10-7 9600 76 

APDL 2.5 10-3 4.6 10-7 9600 188 

FEMAP 2.5 10-3 4.6 10-7 9600 115 
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Fig. 8. Results of the second set of simulations for the 2D guided propagation case: (a) COMSOL; (b) APDL; (c) FEMAP. 
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2.3. Guided waves propagation in a 3D domain 

The last investigated instance regards the simulation of guided waves propagation in a three-dimensional 
numerical domain. The considered medium is a thin square plate with traction-free boundaries. An edge of 1.26 m 
and a thickness of 1 cm were chosen for the body. The same forcing function used for the bulk simulations was 
employed in this case. It acts as an out-of-plane force, applied at the upper left vertex of the top surface of the 
square. The bottom and right edges of the square were kept fixed while a symmetry condition was prescribed to the 
left and top ones. The force was set in order to selectively excite the anti-symmetric A0 mode. The variable 
monitored was the out-of-plane displacement of a top surface point of the left edge of the plate, at a distance            
d = 0.79 m from the trigger site. The material properties of the body were the same considered in the previous 
sections. The solution of the Lamb problem for the present case of anti-symmetric propagation gave phase velocity 
cph,1 = 1897 m/s , group velocity cg,1 = 2965 m/s and wavelength λ1 = 0.038 m at 50 kHz. The chosen discretization 
criteria yield to be = λ1/10 = 0.0038 m from (1), Δt = 1/(20 50 103) = 1 10-6 s from (3). The found spatial 
discretization is valid for the propagation directions. Since only the zero-order anti-symmetric mode was involved, 
the displacement field in the thickness of the plate is expected to have an almost monotonic behavior (with a 
positive and a negative peak at the outer points), justifying the adoption of no more than two divisions along that 
dimension in order to maintain an acceptable aspect ratio of the elements. These considerations led to the adoption 
of a prismatic mesh: two layers of triangular based prisms fill the volume of the numerical domain. The simulations 
were run from t = 0 to tend = 4 10-4 s. Fig. 9 reports the monitored displacement obtained with COMSOL, APDL and 
FEMAP. The red line marks the arrival time of the anti-symmetric perturbation, expected at t = d/cg,1 = 2.66 10-4 s. 
The second bound was not reported since subsequent to the end of the simulation. It is clear from the figures that 
only FEMAP respected the velocity check. A practical way to deal with the time mismatch shown by COMSOL and 
APDL is to exploit the already described offset between spatial and temporal paces on waves velocities. After 
several trials, it was possible to find an acceptable solution only relaxing the condition given in (3), settling for 10 
divisions per cycle. Another set of FE simulations was run, with a time step of Δt = 2 10-6 s. Fig. 10 report the 
monitored displacement over time for the second set of analyses. Signals obtained with COMSOL and APDL 
respect the check of velocities while an excessive delay can be noticed for FEMAP. Tables Table 5 and Table 6 
summarize the analyses parameters and the running times for the 3D case. The time values reported for FEMAP 
refer to the case of a reduced output (limited to the sole displacement field) with respect to the other codes, since an 
issue of excessive memory occupation arose. 

 
 
 
 

           Table 5. First set of simulations for the 3D guided propagation case: analysis parameters and running times. 

Employed code Element edge [m] 

be 

Time step [s] 

Δt 

Number of elements Running time [s] 

COMSOL 3.8 10-3 1 10-6 530104 1331 

APDL 3.8 10-3 1 10-6 763416 2297 

FEMAP 3.8 10-3 1 10-6 440896 1137 (reduced output) 
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Fig. 9. Results of the first set of simulations for the 3D guided propagation case: (a) COMSOL; (b) APDL; (c) FEMAP. 

 

 
 
 

          Table 6. Second set of simulations for the 3D guided propagation case: analysis parameters and running times. 

Employed code Element edge [m] 

be 

Time step [s] 

Δt 

Number of elements Running time [s] 

COMSOL 3.8 10-3 2 10-6 530104 751 

APDL 3.8 10-3 2 10-6 763416 1139 

FEMAP 3.8 10-3 2 10-6 440896 711 (reduced output) 
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Fig. 9. Results of the first set of simulations for the 3D guided propagation case: (a) COMSOL; (b) APDL; (c) FEMAP. 
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Fig. 10. Results of the second set of simulations for the 3D guided propagation case: (a) COMSOL; (b) APDL; (c) FEMAP. 

 
 
 
 

2.4. High Performance Computing 

 
Running times can be reduced with the employment of High Performance Computing (HPC). The machine 

utilized for the purpose was a Server Dell PowerEdge R940, 4 CPU Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz, 
256 GB of RAM, 2 TB of disk space and 88 working cores. The obtained speed-up is shown for the case of ANSYS 
APDL. The graph in Fig. 11 shows the dependency of running time on the number of active cores for the three-
dimensional case of waves propagation. As expected, time spent to run the analyses decreases with the number of 
cores, exhibiting a tendency to saturation for more than 30 cores. Although the burden on each core reduces when 
their number is augmented, data exchange starts playing a growing role, which explains the flattening of the curve in 
the graph. When shifting from 5 to 88 cores, running time plummets from 43 to 6 minutes, with a time saving of 
86%. 
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Fig. 11. Running time vs number of active cores for the HPC tests. 

 
 
 

 

3. Conclusions 

In the latest decades, ultrasonic guided waves proved to be a valuable tool for the non-destructive assessment of 
structures. The physics behind their propagation is complex and analytical models are possible only for simplified 
cases. The only feasible way for an accurate study of their transmission through variously-shaped domains relies on 
FEM analyses. Although FEM is well suited for the simulation of complex domains, transient analyses come along 
with the matter of spatial and temporal discretization. In this paper different FEM codes were tested against different 
scenarios of waves propagation. Three widely-used commercial tools: COMSOL, ANSYS APDL and FEMAP with 
NX NASTRAN were employed to model bulk and guided ultrasonic waves propagation in two-dimensional models. 
A further instance of guided propagation in a three-dimensional medium was also considered. Numerical domains 
used for guided waves transmission were shaped as thin plates, fulfilling the requirements of the Lamb problem. 
Dispersion curves supplied the group velocities for the waves, allowing for a simple but effective check of 
numerical results. APDL and FEMAP proved to be more robust since they were able to give the correct results for 
different time and space resolutions. As regards running times, COMSOL outperformed the other codes for all the 
considered instances, on the other hand it showed a major sensitivity to the adopted discretization, being waves 
velocities more affected by the spatial and temporal paces. A proper ratio between them needs to be found in order 
to avoid an inaccurate propagation of waves through the numerical domain. 

High Performance Computing (HPC) was tested for the three-dimensional case using APDL. A time saving of 
86% was observed when increasing the working cores from 5 to 88. 
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