70 research outputs found
The effect of the COVID-19 pandemic on the gender gap in research productivity within academia
Using measures of research productivity to assess academic performance puts women at a disadvantage because gender roles and unconscious biases, operating both at home and in academia, can affect research productivity. The impact of the COVID-19 pandemic on research productivity has been the subject of a number of studies, including studies based on surveys and studies based on numbers of articles submitted to and/or published in journals. Here, we combine the results of 55 studies that compared the impact of the pandemic on the research productivity of men and women; 17 of the studies were based on surveys, 38 were based on article counts, and the total number of effect sizes was 130. We find that the gender gap in research productivity increased during the COVID-19 pandemic, with the largest changes occurring in the social sciences and medicine, and the changes in the biological sciences and TEMCP (technology, engineering, mathematics, chemistry and physics) being much smaller.publishedVersio
Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance
We theoretically study the influence of the noise strength on the excitation
of the Brillouin propagation modes in a dissipative optical lattice. We show
that the excitation has a resonant behavior for a specific amount of noise
corresponding to the precise synchronization of the Hamiltonian motion on the
optical potential surfaces and the dissipative effects associated with optical
pumping in the lattice. This corresponds to the phenomenon of stochastic
resonance. Our results are obtained by numerical simulations and correspond to
the analysis of microscopic quantities (atomic spatial distributions) as well
as macroscopic quantities (enhancement of spatial diffusion and pump-probe
spectra). We also present a simple analytical model in excellent agreement with
the simulations
Brillouin propagation modes in optical lattices: Interpretation in terms of nonconventional stochastic resonance
We report the first direct observation of Brillouin-like propagation modes in a dissipative periodic optical lattice. This has been done by observing a resonant behavior of the spatial diffusion coefficient in the direction corresponding to the propagation mode with the phase velocity of the moving intensity modulation used to excite these propagation modes. Furthermore, we show theoretically that the amplitude of the Brillouin mode is a nonmonotonic function of the strength of the noise corresponding to the optical pumping, and discuss this behavior in terms of nonconventional stochastic resonance
High-contrast 10-fs OPCPA-based Front-End for the Apollon-10PW laser (Orale)
International audienceWe present a high-contrast 10-fs Front-End for Ti:sapphire PW-lasers within the Apollon-10PW project. This injector uses OPCPA pumped at 100 Hz by Yb-based CPA chain. Combination of OPCPA and XPW permits a >10 12 contrast ratio
Rectification and Phase Locking for Particles on Two Dimensional Periodic Substrates
We show that a novel rectification phenomena is possible for overdamped
particles interacting with a 2D periodic substrate and driven with a
longitudinal DC drive and a circular AC drive. As a function of DC amplitude,
the longitudinal velocity increases in a series of quantized steps with
transverse rectification occuring near these transitions. We present a simple
model that captures the quantization and rectification behaviors.Comment: 4 pages, 4 postscript figure
Disorder Induced Diffusive Transport In Ratchets
The effects of quenched disorder on the overdamped motion of a driven
particle on a periodic, asymmetric potential is studied. While for the
unperturbed potential the transport is due to a regular drift, the quenched
disorder induces a significant additional chaotic ``diffusive'' motion. The
spatio-temporal evolution of the statistical ensemble is well described by a
Gaussian distribution, implying a chaotic transport in the presence of quenched
disorder.Comment: 10 pages, 4 EPS figures; submitted to Phys. Rev. Letter
Recommended from our members
Use of anthropogenic material affects bird nest arthropod community structure: influence of urbanisation, and consequences for ectoparasites and fledging success
Nests are a critically important factor in determining the breeding success of many species of birds. Nevertheless, we have surprisingly little understanding of how local environment helps shape materials used in construction, how this differs among related species using similar nest sites, or if materials used directly or indirectly influence the numbers of offspring successfully reared. We also have little understanding of any potential links between nest construction and the assemblage of invertebrates which inhabit the nest and in particular, with ectoparasites. We addressed these questions by monitoring the success rates of nest-box using Blue Tits Cyanistes caeruleus and Great Tits Parus major, from rural, urban greenspace and urban garden settings. We collected used nests, identified arthropods present, and measured the proportions of highly processed anthropogenic materials used in their construction. Some 25% of Great Tit nest materials were of an anthropogenic source and this was consistent across habitats, while Blue Tits used little (1-2%) except in gardens (~16%), suggesting that Great Tits preferentially sought out these materials. In fledged nests, increasing use of anthropogenic material was associated with lower general arthropod diversity and ectoparasite predator abundance (Blue Tits only) but higher levels of Siphonapterans (fleas). Higher arthropod diversity was associated with lower flea numbers, suggesting that increased diversity played a role in limiting flea numbers. No direct link was found between breeding success and either anthropogenic material usage, or arthropod diversity and abundance. However, breeding success declined with increasing urbanisation in both species and increased with nest weight in Blue Tits. The interplay between urbanisation and bird ecology is complex; our work shows that subtle anthropogenic influences may have indirect and unexpected consequences for urban birds
Increased Resin Collection after Parasite Challenge: A Case of Self-Medication in Honey Bees?
The constant pressure posed by parasites has caused species throughout the animal kingdom to evolve suites of mechanisms to resist infection. Individual barriers and physiological defenses are considered the main barriers against parasites in invertebrate species. However, behavioral traits and other non-immunological defenses can also effectively reduce parasite transmission and infection intensity. In social insects, behaviors that reduce colony-level parasite loads are termed “social immunity.” One example of a behavioral defense is resin collection. Honey bees forage for plant-produced resins and incorporate them into their nest architecture. This use of resins can reduce chronic elevation of an individual bee's immune response. Since high activation of individual immunity can impose colony-level fitness costs, collection of resins may benefit both the individual and colony fitness. However the use of resins as a more direct defense against pathogens is unclear. Here we present evidence that honey bee colonies may self-medicate with plant resins in response to a fungal infection. Self-medication is generally defined as an individual responding to infection by ingesting or harvesting non-nutritive compounds or plant materials. Our results show that colonies increase resin foraging rates after a challenge with a fungal parasite (Ascophaera apis: chalkbrood or CB). Additionally, colonies experimentally enriched with resin had decreased infection intensities of this fungal parasite. If considered self-medication, this is a particularly unique example because it operates at the colony level. Most instances of self-medication involve pharmacophagy, whereby individuals change their diet in response to direct infection with a parasite. In this case with honey bees, resins are not ingested but used within the hive by adult bees exposed to fungal spores. Thus the colony, as the unit of selection, may be responding to infection through self-medication by increasing the number of individuals that forage for resin
Glassy dynamics in thin films of polystyrene
Glassy dynamics was investigated for thin films of atactic polystyrene by
complex electric capacitance measurements using dielectric relaxation
spectroscopy. During the isothermal aging process the real part of the electric
capacitance increased with time, whereas the imaginary part decreased with
time. It follows that the aging time dependences of real and imaginary parts of
the electric capacitance were primarily associated with change in volume (film
thickness) and dielectric permittivity, respectively. Further, dielectric
permittivity showed memory and rejuvenation effects in a similar manner to
those observed for poly(methyl methacrylate) thin films. On the other hand,
volume did not show a strong rejuvenation effect.Comment: 7 pages, 7 figures. Phys. Rev. E (in press
- …