79 research outputs found

    Local convexity inspired low-complexity non-coherent signal detector for nano-scale molecular communications

    Get PDF
    Molecular communications via diffusion (MCvD) represents a relatively new area of wireless data transfer with especially attractive characteristics for nanoscale applications. Due to the nature of diffusive propagation, one of the key challenges is to mitigate inter-symbol interference (ISI) that results from the long tail of channel response. Traditional coherent detectors rely on accurate channel estimations and incur a high computational complexity. Both of these constraints make coherent detection unrealistic for MCvD systems. In this paper, we propose a low-complexity and noncoherent signal detector, which exploits essentially the local convexity of the diffusive channel response. A threshold estimation mechanism is proposed to detect signals blindly, which can also adapt to channel variations. Compared to other noncoherent detectors, the proposed algorithm is capable of operating at high data rates and suppressing ISI from a large number of previous symbols. Numerical results demonstrate that not only is the ISI effectively suppressed, but the complexity is also reduced by only requiring summation operations. As a result, the proposed noncoherent scheme will provide the necessary potential to low-complexity molecular communications, especially for nanoscale applications with a limited computation and energy budget

    Low-complexity non-coherent signal detection for nano-scale molecular communications

    Get PDF
    Nano-scale molecular communication is a viable way of exchanging information between nano-machines. In this letter, a low-complexity and non-coherent signal detection technique is proposed to mitigate the intersymbol-interference (ISI) and additive noise. In contrast to existing coherent detection methods of high complexity, the proposed non-coherent signal detector is more practical when the channel conditions are hard to acquire accurately or hidden from the receiver. The proposed scheme employs the concentration difference to detect the ISI corrupted signals and we demonstrate that it can suppress the ISI effectively. The concentration difference is a stable characteristic, irrespective of the diffusion channel conditions. In terms of complexity, by excluding matrix operations or likelihood calculations, the new detection scheme is particularly suitable for nano-scale molecular communication systems with a small energy budget or limited computation resource

    AMPK exerts dual regulatory effects on the PI3K pathway

    Get PDF
    BACKGROUND AMP-activated protein kinase (AMPK) is a fuel-sensing enzyme that is activated when cells experience energy deficiency and conversely suppressed in surfeit of energy supply. AMPK activation improves insulin sensitivity via multiple mechanisms, among which AMPK suppresses mTOR/S6K-mediated negative feedback regulation of insulin signaling. RESULTS In the present study we further investigated the mechanism of AMPK-regulated insulin signaling. Our results showed that 5-aminoimidazole-4-carboxamide-1 ribonucleoside (AICAR) greatly enhanced the ability of insulin to stimulate the insulin receptor substrate-1 (IRS1)-associated PI3K activity in differentiated 3T3-F442a adipocytes, leading to increased Akt phosphorylation at S473, whereas insulin-stimulated activation of mTOR was diminished. In 3T3-F442a preadipocytes, these effects were attenuated by expression of a dominant negative mutant of AMPK α1 subunit. The enhancing effect of ACIAR on Akt phosphorylation was also observed when the cells were treated with EGF, suggesting that it is regulated at a step beyond IR/IRS1. Indeed, when the cells were chronically treated with AICAR in the absence of insulin, Akt phosphorylation was progressively increased. This event was associated with an increase in levels of phosphatidylinositol -3,4,5-trisphosphate (PIP3) and blocked by Wortmannin. We then expressed the dominant negative mutant of PTEN (C124S) and found that the inhibition of endogenous PTEN per se did not affect phosphorylation of Akt at basal levels or upon treatment with AICAR or insulin. Thus, this result suggests that AMPK activation of Akt is not mediated by regulating phosphatase and tensin homologue (PTEN). CONCLUSION Our present study demonstrates that AMPK exerts dual effects on the PI3K pathway, stimulating PI3K/Akt and inhibiting mTOR/S6K.National Institutes of Health (CA118918, GM057959

    A Comprehensive Survey on Orbital Edge Computing: Systems, Applications, and Algorithms

    Full text link
    The number of satellites, especially those operating in low-earth orbit (LEO), is exploding in recent years. Additionally, the use of COTS hardware into those satellites enables a new paradigm of computing: orbital edge computing (OEC). OEC entails more technically advanced steps compared to single-satellite computing. This feature allows for vast design spaces with multiple parameters, rendering several novel approaches feasible. The mobility of LEO satellites in the network and limited resources of communication, computation, and storage make it challenging to design an appropriate scheduling algorithm for specific tasks in comparison to traditional ground-based edge computing. This article comprehensively surveys the significant areas of focus in orbital edge computing, which include protocol optimization, mobility management, and resource allocation. This article provides the first comprehensive survey of OEC. Previous survey papers have only concentrated on ground-based edge computing or the integration of space and ground technologies. This article presents a review of recent research from 2000 to 2023 on orbital edge computing that covers network design, computation offloading, resource allocation, performance analysis, and optimization. Moreover, having discussed several related works, both technological challenges and future directions are highlighted in the field.Comment: 18 pages, 9 figures and 5 table

    Research hotspots and frontiers in post-stroke dysphagia: a bibliometric analysis study

    Get PDF
    BackgroundDysphagia is a common complication of stroke that can result in serious consequences. In recent years, more and more papers on post-stroke dysphagia have been published in various journals. However, there is still a lack of bibliometric analysis of post-stroke dysphagia. This study visually analyzes the global research situation of post-stroke dysphagia from 2013 to 2022, aiming to explore the current research status, frontier trends, and research hotspots in this field.MethodsArticles and reviews relevant to post-stroke dysphagia were obtained and retrieved from the Web of Science core collection database in the last 10 years (from 2013 to 2022). CiteSpace and Microsoft Excel 2019 were used for bibliographic analysis.ResultsA total of 1,447 articles were included in the analysis. The number of publications showed an overall upward trend, from 72 in 2013 to 262 in 2022. The most influential authors, institutions, journals, and countries were Hamdy S, University of London, Dysphagia, and the People's Republic of China. An analysis of keywords and the literature indicated that current studies in the field of post-stroke dysphagia focused on dysphagia and aspiration, dysphagia classification, dysphagia rehabilitation, and daily living.ConclusionThis bibliometric analysis reveals the latest advancements and emerging trends in the field of post-stroke dysphagia, spanning the years 2013 to 2022. It highlights the paramount importance of conducting large-scale randomized controlled trials examining the efficacy of dysphagia screening protocols and non-invasive intervention techniques in improving the quality of life for these patients. Such research efforts hold significant academic implications for the development of evidence-based treatment strategies in this field

    Local Convexity Inspired Low-Complexity Noncoherent Signal Detector for Nanoscale Molecular Communications

    Full text link

    Secondary infection of Fasciola gigantica in buffaloes shows a similar pattern of serum cytokine secretion as in primary infection

    Get PDF
    BackgroundAs a natural host of Fasciola gigantica, buffalo is widely infected by F. gigantica. Its impact on buffalo production has caused great losses to the husbandry sector, and repeat infection is non-negligible. In buffaloes experimentally infected with F. gigantica, primary and secondary infection have yielded the same rate of fluke recovery, indicating a high susceptibility of buffalo to F. gigantica, which contributes to the high infection rate. Determining the immunological mechanism of susceptibility will deepen the understanding of the interaction between F. gigantica and buffalo. Here, we explored the immune response of buffaloes against primary and secondary F. gigantica infection, with a focus on cytokines’ dynamics explored through serum cytokine detection.MethodsBuffaloes were assigned to three groups: group A (noninfected, n = 4), group B (primary infection, n = 3), and group C (secondary infection, n = 3). Group B was infected via oral gavage with 250 viable F. gigantica metacercariae, and group C was infected twice with 250 metacercariae at an interval of 4 weeks. The second infection of group C was performed simultaneously with that of group B. Whole blood samples were collected pre-infection (0 weeks) and at 1–6, 10, and 12  weeks after that. The serum levels of seven cytokines (IFN-Îł, IL-4, IL-5, IL-10, IL-13, TGF-ÎČ, and IL-17) were simultaneously determined using ELISA and further analyzed.ResultsIn the present study, no significant changes in Th1-type cytokines production were detected in early infection, both in primary and secondary infections, while the Th2-type response was strongly induced. A comparison of primary and secondary infection showed no significant difference in the cytokine secretion, which may indicate that the re-infection at 4 weeks after primary infection could not induce a robust adaptive immune response. The full extent of interaction between buffalo and F. gigantica in re-infection requires further study

    Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: an Insight into Current Flow across Schottky Barriers

    Full text link
    In this article, we study the properties of metal contacts to single-layer molybdenum disulfide (MoS2) crystals, revealing the nature of switching mechanism in MoS2 transistors. On investigating transistor behavior as contact length changes, we find that the contact resistivity for metal/MoS2 junctions is defined by contact area instead of contact width. The minimum gate dependent transfer length is ~0.63 {\mu}m in the on-state for metal (Ti) contacted single-layer MoS2. These results reveal that MoS2 transistors are Schottky barrier transistors, where the on/off states are switched by the tuning the Schottky barriers at contacts. The effective barrier heights for source and drain barriers are primarily controlled by gate and drain biases, respectively. We discuss the drain induced barrier narrowing effect for short channel devices, which may reduce the influence of large contact resistance for MoS2 Schottky barrier transistors at the channel length scaling limit.Comment: ACS Nano, ASAP (2013

    Adjunctive granisetron therapy in patients with sepsis or septic shock (GRANTISS): A single-center, single-blinded, randomized, controlled clinical trial

    Get PDF
    Background: In preclinical experiments, we demonstrated that the 5-HT3 receptor antagonist granisetron results in reduced inflammation and improved survival in septic mice. This randomized controlled trial was designed to assess the efficacy and safety of granisetron in patients with sepsis.Methods: Adult patients with sepsis and procalcitonin ≄ 2 ng/ml were randomized in a 1:1 ratio to receive intravenous granisetron (3 mg every 8 h) or normal saline at the same volume and frequency for 4 days or until intensive care unit discharge. The primary outcome was 28-day all-cause mortality. Secondary outcomes included the duration of supportive therapies for organ function, changes in sequential organ failure assessment scores over 96 h, procalcitonin reduction rate over 96 h, the incidence of new organ dysfunction, and changes in laboratory variable over 96 h. Adverse events were monitored as the safety outcome.Results: The modified intention-to-treat analysis included 150 septic patients. The 28-day all-cause mortalities in the granisetron and placebo groups were 34.7% and 35.6%, respectively (odds ratio, 0.96; 95% CI, 0.49–1.89). No differences were observed in secondary outcomes. In the subgroup analysis of patients without abdominal or digestive tract infections, the 28-day mortality in the granisetron group was 10.9% lower than mortality in the placebo group. Adverse events were not statistically different between the groups.Conclusion: Granisetron did not improve 28-day mortality in patients with sepsis. However, a further clinical trial targeted to septic patients without abdominal/digestive tract infections perhaps is worthy of consideration

    Worldspace Heatmaps

    No full text
    Many games are set in 3D worlds and have shifting camera viewpoints. In this study, we attempt to create and evaluate a Proof-of-Concept Worldspace Heatmap System that accounts for the shifting camera views in 3D game worlds, in an attempt to improve user testing processes. We test the system by conducting a stimulated recall user study, in which we examine the areas in a game that drew the attention of the participants, with the help of heatmaps placed in the game world. Our results include observations of several behavior patterns and participant evaluations of the Worldspace Heatmap System. We observed multiple indications in the data we gathered, that such a system can be useful for obtaining player behavior insights and for enhancing user testing processes, especially if some of the limitations are overcome
    • 

    corecore