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Local Convexity Inspired Low-complexity

Noncoherent Signal Detector for Nano-scale

Molecular Communications

Bin Li, Mengwei Sun, Siyi Wang, Weisi Guo, Chenglin Zhao

Abstract

Molecular communications via Diffusion (MCvD) represents a relatively new area of wireless data transfer with

especially attractive characteristics for nano-scale applications. Due to the nature of diffusive propagation, one of

the key challenges is to mitigate inter-symbol interference (ISI) that results from the long tail of channel response.

Traditional coherent detectors rely on accurate channel estimations and incur a high computational complexity.

Both of these constraints make coherent detection unrealistic for MCvD systems. In this paper, we propose a

low-complexity and non-coherent signal detector, which exploits essentially the local convexity of the diffusive

channel response. A threshold estimation mechanism is proposed to detect signals blindly, which can also adapt

to channel variations. Compared to other non-coherent detectors, the proposed algorithm is capable of operating

at high data rates and suppressing ISI from a large number of previous symbols. Numerical results demonstrate

that not only is the ISI effectively suppressed, but the complexity is also reduced by only requiring summation

operations. As a result, the proposed non-coherent scheme will provide the necessary potential to low-complexity

molecular communications, especially for nano-scale applications with a limited computation and energy budget.
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I. INTRODUCTION

FOR more than a century, humanity has relied on wave-based communications as the primary means

of carrying information without a tether. As we move forward, we have found new operating

environments and new dimensions that require wireless communications. For example, in nano-medicine,

we may need to communicate across micro- and nano-scale distances, using low-energy and -complexity

nano-machines. In this and many other challenging environments, wave-based communications may not

always be best suited to transferring data.

A. Development Background

Molecular communications, a biologically-inspired concept, involves the transfer of information via a

population of molecular messengers [1]–[6]. The data can be embedded onto the various chemical and

physical properties of the molecular messengers [7], [8]. For example, in nature, molecular communications

is used across macro- (e.g. communication between moths can be up to a few kilo-metres) and micro-

distance scales (e.g. quorum sensing). Generally, MCvD relies on the diffusion process [9], and in some

cases, this can be accelerated by ambient or assisted flow (e.g., convection flow) [10]. In terms of

application, a variety of envisaged scenarios have been proposed in the IEEE standardization document

(IEEE P1906.1-2015), one of which is in the promising area of nano-medicine: in-body targeted drug

delivery or surgery [11].

Recently, one of the first experimental test-bed of molecular communications has been developed

and reported in [12]. It consists of a transmitter that emits short pulses of molecules bearing the data

using the binary concentration shift keying (B-CSK) modulation. The channel is a random-walk based

diffusion channel with optional induced drift. The receiver is a chemical detector that will covert chemical

concentration into an electrical signal. It was demonstrated that generic text information can be reliably

conveyed via the MCvD process, and the communication distance may even approach several meters in

the unbounded free-space.

B. Coherent and Non-Coherent Receiver Design

Molecular communication channels are significantly more stochastic than alternative wireless chan-

nels [13], [14]. The expected characteristic at the receiver (i.e., magnitude of the peak response) of even

a large number of molecules undergoing random walk can be unpredictable for the following reasons. In
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a fixed distance molecular channel, the diffusivity parameter (rate of diffusion) may vary as a function

of time due to changes in the channel temperature and external disturbances (i.e., convection current).

In a mobile molecular channel, small changes in the distance may also result in significant variations in

the expected characteristic at the receiver. This has been demonstrated in a recent paper by the authors

where small physical perturbations were added to the transmitter [15]. The observed channel frequency

response was significantly shifted, indicating that micro-disturbances in the channel or the transmitter

/ receiver can cause significant changes to the channel response. Therefore, whilst traditional detection

techniques can achieve a good performance with channel information, in reality estimating the channel

response accurately may prove to be extremely difficult.

In order to mitigate the inter-symbol interference (ISI), a number of coherent detection schemes, which

utilize the knowledge of the channel response, have been widely studied [16]–[19], e.g., the maximum

a posteriori (MAP) detector and the minimise mean square error (MMSE) methods. After accurately

acquiring the channel response, a decision-feedback equaliser (DFE) has been proposed [16]. In addition

to the aforementioned post-equalisation schemes, a pre-equalisation scheme has also been investigated [20].

Whilst the existing coherent methods can mitigate ISI, they require the accurate channel state information

(CSI) (i.e. the equivalent diffusion channel response), as well as complex digital signal processing (DSP)

implementations.

In contrast to coherent detection, a non-coherent scheme can avoid the challenge of acquiring or

estimating the channel response and the complex DSP operations associated with coherent methods. In our

previous work, a simple non-coherent detection scheme is proposed for molecular communications [21].

The non-coherent method essentially exploits the long-tail property of diffusion channel and utilizes

the concentration difference among two adjacent slots to detect the unknown signal. When the symbol

duration is greatly larger than the diffusion time of peak concentration, the suggested difference-based

non-coherent detector could obtain the promising performance with a simple implementation. However,

for other applications where the symbol duration is relatively small, then its performance will degrade

significantly, as the difference operation can not effectively eliminate the self-interference from the previous

slots. So, this difference-based scheme is vulnerable to self-interference and its application is thereby

limited only to some low-rate applications.

Inspired by the time-domain local convexity feature of molecular concentration in each slot, in this

study we propose a new non-coherent signal detection scheme, which will be more robust to the self-
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interference and hence has broader applications. Irrespective of fluctuations in the channel conditions (i.e.

diffusivity), the CSI has certain features that can be exploited at the receiver side. By exploiting the local

time-domain convex shape of the channel response, a simple yet effective metric is constructed, which is

then utilised to judge whether a new molecule transmission has arrived in the current interval. In order to

detect signals blindly, an adaptive threshold is also designed, which can adapt to channel changes based

on the received signals. The major innovation of our new scheme is that, by excluding the complicated

matrix multiplications in MAP and MMSE methods, the proposed scheme’s DSP implementation involves

only a number of summations. As shown by the numerical analysis, even without a channel estimator or

accurate CSI, the proposed non-coherent scheme may achieve a promising detection performance and is

robust to channel variations.

The rest of the article is structured as follows. In Section II, the systems model is introduced and

existing coherent detection algorithms are briefly reviewed. A new non-coherent detection algorithm is

then proposed in Section III, including the construction of convex metrics and the designing of blind

decision threshold. Simulation results are provided in Section IV, and we conclude the whole investigation

in Section V.

II. SYSTEM MODEL & REVIEW OF COHERENT DETECTION

In the section, we first elaborate on the signal model of MCvD systems studied in the literature [16].

This is followed by a short review of existing MAP and MMSE coherent detection schemes.

A. Channel and Noise Model

A model of the physical-link MCvD channel is illustrated by Fig.1. At the beginning time of each symbol

Tb, the molecular transmitter emits one short pulse with the duration of Tp. The on-off keying (OOK)

line code is used [21], [22], i.e., the binary information symbol is αk ∈ A = {0, 1}, k = 0, 1, · · · , K.

Each emitted pulse with a duration Tp consists of a number of molecules A. After propagating through

the diffusion channel h(t), the number of molecules received at the receiver is:

r(t) = A×
K∑
k=0

αkrect

(
t− Tp/2

Tp
− kTb

)
⊗ h(t) + w(t),

= A×
K∑
k=0

αky(t− kTb) + w(t).

(1)
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Here, Tp is the duration each emitted pulse and A is the release rate. K = bt/Tbc denotes the total

number of symbols until time t; a rectangular pulse shaper is adopted by the transmitter, which has

amplitude 1. The notation ⊗ denotes the convolution, and the channel impulse response at the receiver

is y(t) , rect [(t− Tp/2)/Tp − kTb] ⊗ h(t) [21]. Usually, the symbol period is much larger than the

emission duration, i.e. Tp � Tb. E.g., in [12] Tb is 3s whilst Tp is configured only to 100 ms. This

is because a large Tp will further expand the channel response (i.e. y(t)) and result in more serious

self-interference. The parameter w(t) represents the additive noise introduced by the imperfect counting

process, e.g. the receiver may have a low-sensitivity chemical-to-electrical converter (i.e. leading to an

unknown fluctuation in the number of molecules received), especially when the nano-scale low-complexity

sensors are required.

In practice, there are two kinds of noise sources in MCvD, both of which are modeled as memoryless

additive noise. It is claimed in [23] that the additive noise will be aroused either by the discreteness

of molecule numbers (physical-sampling noise), or the imperfection of a receptor (e.g. when counting

the number of molecules, known as physical-counting noise). As the physical-sampling noise in the

context of the discrete binary concentration modulation would be negligible, here we focus only on the

counting noise, which is assumed to be independent and identically distributed (i.i.d) zero-mean white

Gaussian processes with a variance of σ2
w, i.e. w(t) ∼ N (0, σ2

w). It is noted that, although the Gaussian

approximation is used for the convenience of analysis [16], the designed scheme is independent of the

statistical distributions of counting noises, as the noise-dependent likelihood function will not be required

by the proposed non-coherent detector.

In general, the channel impulse response of a 3-D unbounded diffusion channel can be characterised

by:

h(t) =
1

(4πDt)3/2
exp

(
− |d|

2

4Dt

)
, (2)

where D ∼ 10−9m2/s is the diffusion coefficient; d is the Euclidean distance between a transmitter and a

receiver [9], [24], [25].

B. Previous Works

As in previous works, one normally assumes that the synchronisation of the molecular communication

link has already been accomplished [26]. In existing coherent detection methods, the receiver samples the
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molecular concentration at a specific rate Tb 1, and the resulting discrete signal is:

rk =
K∑
l=0

αlyk−l + wk, (3)

where rk , r(kTb), yk , y[(k + 1)Tb] and wk , w(kTb). For convenience, the received signal will

be further expressed as rK×1 = Yααα + w. If we define the number of previous symbols that contribute

towards ISI as I , then rK×1 , [rk, rk−1, . . . , rk−K+1]T , where K is the block length of information bits;

ααα(K+I)×1 , [αk, αk−1, . . . , αk−K−I+1]T ; YK×(K+I) is the circulant channel matrix constructed from the

equivalent channel response yI×1 , [y0, y1, · · · , yI ]T , and wK×1 is additive noise vector. The channel

matrix YK×(K+I) is expressed as [21]:

Y =


y0 y1 · · · yI 0 · · · 0

0 y0 y1 · · · yI 0 0

...
...

... . . . ...
...

...

0 · · · 0 y0 y1 · · · yI


.

Here, we assume the channel response yk will keep invariant in a transmission block of the length K.

Taking the kth received sample for example, it will be expressed as rk = aky0 + ak−1y1 + · · ·+ ak−IyI︸ ︷︷ ︸
ISI

,

which contains the ISI from the previous I intervals 2.

1) MAP: For the coherent MAP schemes, the accurate estimation of channel response should be

acquired first. Thus, relying on the posterior distribution, the unknown symbols are recovered via:

α̂ααMAP = arg max
ααα∈AK

Pr(ααα|r,Y),

= arg max
ααα∈AK

K∏
k=0

Pr(αk|αk−1)
K∏
k=0

Pr(rk|r0:k−1, α0:k),
(4)

where the likelihood densities Pr(rk|r0:k−1, α0:k) follow the Gaussian distribution, as suggested by [16].

Based on the trellis search [19], a sequential estimation strategy will be used to solve Eq. (4). For the

i.i.d information source αk ∈ A with the equal priors for “0” and “1”, the MAP scheme is equivalent

to a maximum likelihood (ML) method. Note that, for the non-Gaussian noises [23], the corresponding

likelihood density will be required when performing the Bayesian estimation.

1The sampling time may be smaller than the symbol duration for coherent detection [17]. As will be seen later, for the considered
non-coherent detector, an over-sampling technique would also be adopted where Ts < Tb.

2Note that, the above vector notation does not apply if k < I .
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2) MMSE: Another widely used sub-optimal detector is based on the MMSE criterion [27], which will

minimise the covariance matrix of residual errors, i.e.,

α̂ααMMSE = arg min
ααα∈AK

E
[
(ααα− α̂αα)(ααα− α̂αα)T

]
. (5)

Based on the linear and Gaussian model in Eq. (3), the MMSE estimation of estimated symbols is

derived from:

α̂ααMMSE = E(ααα|r),

= E(ααα) + ΛΛΛwY
T (YΛΛΛwY

T + ΛΛΛw)−1(r−Yααα),
(6)

where E(·) represents the statistical expectation, ΛΛΛw denotes a K ×K diagonal matrix with its elements

are all equal to σ2
w. From Eq. (5), an accurate estimation of CSI y is required when constructing Y.

Note that, a finite memory I is necessary in both the sequential MAP and MMSE schemes [16], [27].

That is, even though the molecular concentration from previous transmissions will be sustained for a

very long time, coherent detectors have to truncate the memory length to a finite number I < ∞ in

order to alleviate the implementation complexity. Other threshold-based methods, e.g. in [28], utilize the

knowledge of the channel response, which may be essentially treated as a coherent detector.

Coherent signal detectors will no doubt obtain an appealing detection performance [16], [18], [26],

[27], but still face challenges in operating as part of a realistic molecular communication system. For one

thing, due to the nature of the diffusion process and its sensitivity to channel disturbances, the response

yI×1 can be difficult to estimate. Even if the a priori pilot sequence is available, the accurate acquisition

of CSI is still resource intensive and has a short coherence time. For another, traditional coherent schemes,

such as MAP or MMSE, will inevitably involve computational matrix inversions or polynomial operations.

The acquisition of CSI and the resulting complex DSP implementation, as a consequence, will be the

main stumbling-blocks of applying such coherent schemes to low-complexity and low-power scenarios.

III. NON-COHERENT SIGNAL DETECTOR

The design of non-coherent detection will be of significant benefit to molecular communications,

especially for nano-scale systems that have a lower energy and computation budget. A one-step interference

mitigation scheme has been suggested by [29] to mitigate ISI from the previously time-slot. The infor-

mation at time k is demodulated via a threshold, provided the interference from previous symbols k− k0

(k0 ≥2) could be ignored. Thus, this non-coherent scheme may be suitable for very low data-rate molecular
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communications, i.e., the symbol duration is larger than the arrival time of the peak concentration, tm.

When we want to achieve a relatively high data-rate, the ISI from multiple previous transmission slots will

be accumulated (see Eq. (3)), which will cause severe ISI in the one-step SIC detection scheme [29]. The

differential detector reported in our previous work [21] assumes the accumulated ISI in two adjacent slots

will be comparable, which is only applicable to some low-rate applications. Other non-coherent detection

schemes include the one proposed in [18], which describes a family of weighted sum detectors.

In this work, we propose a simple yet efficient non-coherent detector premised on the local convexity of

the diffusion channel response, which may differ dramatically from the common coherent concepts [16],

[19], [20]. Note that, rather than a spatial concept, the local convexity in fact refers to the time domain.

As seen later, the diffusive channel response will be only be convex for a short duration. Essentially, we

exploit certain stable features of the diffusion channel that exist irrespective of the changes of the channel.

The new detection scheme, therefore, may lead to a class of low-complexity and robust techniques that

can aid the design of nano-scale molecular communication systems.

A. Local Convexity

For the diffusion-based molecule propagation channel, we will have the following two remarks.

Remark 1: There exists two time deviations t1 and t2 from the start point t = 0, such that for the

interval, i.e., t ∈ [t1, t2], the channel response h(t) is locally convex; while for the remaining two regions,

i.e., t ∈ (0, t1) ∪ (t2,∞), the channel response is locally concave.

We may easily have the 2nd order derivative of the channel response h(t), i.e.,

∂2h(t)

∂t2
= exp

(
− d2

4Dt

)
× (d4 − 20d2Dt+ 60D2t2)

128π3/2D7/2t11/2
. (7)

Letting the 2nd partial derivative be zero, i.e. ∂2h(t)
∂t2

= 0, we will equivalently have 60D2t2− 20d2Dt+

d4 = 0 since the term exp
(
− d2

4Dt

)
is always larger than 0. Thus, we can obtain two inflection points on

the channel response h(t), i.e.,

t1 =
(5−

√
10)× d2

30D
, t2 =

(5 +
√

10)× d2

30D
. (8)

It is easily shown that for the region t ∈ [tI1 , tI2 ], we will have:

∂2h(t)

∂t2

∣∣∣∣
(5−
√

10)×d2

30D
<t<

(5+
√

10)×d2

30D

≤ 0. (9)
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For the other regions t ∈ (0, t1) ∪ (t2,∞), we similarly obtain:

∂2h(t)

∂t2

∣∣∣∣
t≤ (5−

√
10)×d2

30D
∪t≥ (5+

√
10)×d2

30D

> 0. (10)

Remark 2: The maximum value of the channel response h(t) will be achieved when t = tm, and we

have t1 < tm < t2.

Similarly, let the 1st partial derivative to be zero, i.e.,

∂h(t)

∂t
=

d2

2Dt2 × (4πD)3/2
× exp

(
− d2

4Dt

)
− 6πD

(4πft)5/2
× exp

(
− d2

4Dt

)
= 0. (11)

Then, we may obtain:

tm = d2/6D, tI1 < tm < tI2 . (12)

Note that from Eq. (12), the arrival time of peak concentration tm will be proportional to the square of

the distance d. For some macro-scale molecular communications, the symbol duration Tb may be smaller

than tm in the case that a relatively high data rate is required.

Since the duration of emission pulse (i.e. Tp) is significantly smaller than both tm and t2 (or t1)3, the

locally convex property of the equivalent response y(t) will remain the same as h(t), i.e.,

∂y(t)

∂t
' ∂h(t)

∂t
,
∂2y(t)

∂t2
' ∂2h(t)

∂t2
. (13)

For a more general case, p(t) , rect [(t− Tp/2)/Tp − kTb] accounts for a common gate (or indicator)

function, i.e., p(t) = 1 in the time region (−Tp/2, Tp/2] and, otherwise, p(t) = 0. For clarity, we consider

the equivalent discrete signal model, and the received response y(k) is then expressed as:

y(k) =
+∞∑
k0=0

h(k − k0)× p(k0) =

K0−1∑
k0=0

h(k − k0). (14)

Here, K0 = bTp/Tsc is a discrete length, and Ts is the time duration of the over-sampling process.

Denote two inflection indexes by K1 = bt1/Tsc and K2 = bt2/Tsc. Given an arbitrary integer k1 satisfying

3See [12] where the emission time is anout Tp = 100 ms, while the measured inflection times are about t1 = 4 s and t2 = 12 s at the
distance of 4 meters.
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k1 ∈ [0, K2−K1], in the sub-region k ∈ [K1 + k1 + k0, K2− k1 + k0] we will have the following relation:

y(k + k1) + y(k − k1) =

K0−1∑
k0=0

h(k + k1 − k0) +

K0−1∑
k0=0

h(k − k1 − k0),

≤
K0−1∑
k0=0

2× h(k − k0) = 2× y(k).

(15)

The above Eq. (15) indicates that, even if the shaping function p(t) is not an ideal Dirac-delta function

(i.e. K0 > 1), the equivalent response y(t) will remain convex around the peak time, for K0 < KI2 . As

mentioned above, this condition can be easily satisfied in practice, as in a common communication system

we usually use a very small K0 in order to control ISI.

Based on the above two remarks, it is concluded that the shape of received molecular numbers is

locally convex around the diffusion peak. In practice, the time deviation of the peak concentration within

each duration Tb, which is denoted by T∆ ∈ [0, Tb], will remain unknown. Thus, a pre-timing process is

necessary to estimate T∆. For simplicity, in the analysis we assume the peak time (i.e. kTb + T∆) has

been acquired.

In order to fully exploit the aforementioned convex property and design a non-coherent detection

scheme, an over-sampling technique should be adopted, which will remain relatively different from existing

coherent detection methods where a sampling period Ts can be configured directly to Tb as in eq. (3). In

the case of over-sampling, we assume L0Ts = Tb/2 for convenience, where L0 = bTb/Tsc/2 is an integer

larger than 1. Thus, the over-sampled signal in the kth duration is:

rk,l ,
K∑
n=0

αk × y(t)|t=(k−n)Tb+T∆+lTs + wk,l, l ∈ [−Tb/Ts, Tb/Ts − 1], (16)

where the i.i.d noises wk,l follow a Gaussian distribution, i.e. wk,l ∼ N (0, σ2
w).

B. Local Convexity Detector

The designed non-coherent detector mainly contains three steps. Firstly, a pre-smoothing process is

used to suppress noise. Then, the convex metric will be constructed. Finally, the obtained convex metric

will be compared with the threshold, and the unknown information symbol will be estimated.

1) Pre-Smoothing: Firstly, L zeros will be padded to the front of sequence, and the zero-padding

signal is written as:

s = [0, · · · , 0, r1,−L, r1,−L+1, · · · , r1,L, · · · , rK,−L, · · · , rK,L]T . (17)
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where rk,l (−L 6 l 6 L) denote the l-th over-sampled signal of the k-th symbol duration.

A moving average (MA) process with a length of 2L+ 1 (L 6 bTb/Tsc/2c) will be applied then. For

n > L, the smoothed signal r̆(n) is:

r̆(n) =
1

2L+ 1
×

n+L∑
q=n−L

sq. (18)

2) Local Convexity: In the proposed non-coherent scheme, the local convexity of received concen-

trations will be exploited to recover unknown information. Recall that a convex function f(x) satisfies

1/2 × [f(x + ∆x) + f(x − ∆x)] < f(x), or f(x + ∆x) + f(x − ∆x) < f(x + δx) + f(x − δx) when

∆x > δx. Thus, we should evaluate the convexity around a diffusion peak time of each symbol duration.

Based on the above elaboration, we define a group of sub-metrics as:

c
(1)
k ,

L∑
l=1

[
r̆(kTb + T∆)− r̆(kTb + T∆ + lTs) + r̆(kTb + T∆ − lTs)

2

]
, (19a)

c
(2)
k ,

1

2
×

L−1∑
l=1

{r̆(kTb + T∆ + lTs) + r̆(kTb + T∆ + LTs − lTs)−

r̆[kTb + T∆ + (l + 1)× Ts]− r̆[kTb + T∆ + LTs − (l + 1)× Ts]} , (19b)

c
(3)
k ,

1

2
×

L+1∑
l=1

{r̆(kTb + T∆ + lTs) + r̆(kTb + T∆ + LTs + lTs)−

r̆[kTb + T∆ + (l + 2)× Ts]− r̆[kTb + T∆ + LTs + (l − 2)× Ts]} . (19c)

Here, kTb+T∆ accounts for the peak concentration time of the kth symbol, which may be redefined as

T∆(k) , kTb + T∆. It should be noted that, after the over-sampling process, the discrete signal should be

indexed via k and l. For clarity, in the above definition and following analysis, we focus on the convexity

sub-metrics constructed from the 2L+1 discrete samples that are centered at the peak concentration, which

may be directly indexed by k as in Eq. (19). This is because such convexity sub-metrics c(i)
k (i = 1, 2, 3)

may be of more significance to the estimation of unknown symbols αk. However, for more general cases

where the analyzed samples are not centered at peak concentrations (e.g. kTb+T∆ + l′Ts), the constructed

convexity sub-metrics should be indexed by k and l′ jointly, e.g. ck,l′ . Since the construction of general

convex sub-metrics is the same as Eq. (19), the expressions will be omitted in the following analysis.

Taking the first metric in Eq. (19) for example, when the information bit is αk = 1, this sub-metric

will be larger than 0, which hence can be used as a convex metric. Then, the convexity metric will be
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specified by:

ck = c
(1)
k + c

(2)
k + c

(3)
k . (20)

Remark 3: The convexity metric ck will effectively suppress the ISI generated by the previous (k− k0)

symbols.

Due to the heavy tail and the slow decay of concentration from previous symbols, the residual in-

terference ek−k0 at the kth interval, generated from the (k − k0)th previous symbol, may be linearly

approximated by Eq. (21), as demonstrated in Fig. 2.

ek−k0(k, l) = αk−k0 × y[T∆(k − k0) + lTs],

w αk−k0 × y[T∆(k − k0) + LTs] + bk−k0 × (L+ l) + o{(L+ l)2},

w Ck−k0 + bk−k0 × (L+ l), − L 6 l ≤ L. (21)

where Ck−k0 = αk−k0 × y[t − T∆(k − k0) + LTs] > 0 is the intercept of an approximated line, and

bk−k0' αk−k0 ×
dy(t)
dt
|t=(k−k0)Tb+LTs < 0 is its negative slope.

Relying on Eq. (21), in the presence of ISI from the (k − k0)-th time, the expectation of the first

sub-metric of time bin [T∆(k)− LTs, T∆(k) + LTs] can be simplified to:

E{c(1)
k } '

−1

2

L∑
l=1

αky[T∆(k) + lTs]−
L

2

I∑
k0=1

(
Ck−k0 +

3(L− 1)

2
bk−k0

)

− 1

2

L∑
l=1

αky[T∆(k)− lTs]−
L

2

I∑
k0=1

(
Ck−k0 +

L− 1

2
bk−k0

)

+ L×

[
αky(T∆(k)) +

I∑
k0=1

(Ck−k0 + bk−k0L)

]
,

= αk ×

{
Ly[T∆(k)]−

∑L−1
l=1 [y(T∆(k) + lTs) + y(T∆(k)− lTs)]

2

}

+
I∑

k0=1

(2Lbk−k0 − 2L2bk−k0).

(22)

Similarly, the expectations of the second and third sub-metrics will be simplified, i.e.,

E{c(2)
k } =

αk
2
×

L−1∑
l=1

{y[T∆(k) + lTs] + y[T∆(k) + LTs − lTs]

−y[T∆(k) + (l + 1)× Ts]− y[T∆(k) + LTs + (l + 1)× Ts]} ,
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E{c(3)
k } =

αk
2
×

L−1∑
l=1

{y[T∆(k) + lTs] + y[T∆(k) + LTs − lTs]

−y[T∆(k) + (l + 2)× Ts]− y[T∆(k) + LTs + (l + 2)× Ts]} .

It is noted from Eq. (22) that the expectation of the first sub-metric c
(i)
k will be independent of the

additive noise. This is because the constructed convex sub-metrics involve only the linear summation or

subtraction operations of the zero-mean noise samples. In Eq. (22), the first term αk × µ1 accounts for

the useful signal with µ1 , Ly(T∆(k)) − 1
2
×
∑L−1

l=1 [y(T∆(k) + lTs) + y(T∆(k) − lTs)] > 0, the second

term
∑I

k0=1(2Lbk−k0 − 2L2bk−k0) → 0 may be dropped, as the decay slope usually is very small for a

large k0, i.e. bk−k0 → 0. So, the convexity metric ck will suppress the ISI from the previous (k − k0)-th

time interval. Similar conclusions can be drawn to the other two convexity sub-metrics.

From the simplified expression of c(1)
k , an explanation will be further given on how the convexity

sub-metrics could suppress ISI. In the case of αk = 1, the convex shape will occur around the peak

concentration, so we have ck significantly larger than zero. Note that, even though the ISI signals from

the previous (k− k0)-th slot may probably exhibit the concave shape, the convexity of ck will almost not

be affected. This is because the diffusion response usually exhibits the long tail, and the ISI signal from

the (k − k0)-th slot would be approximated by a linear function, which of course will not change the

convex shape of useful signals in the k-th slot. To sum up, the convex shape is determined by the useful

signals related with αk, while the second term as in Eq. (21) will not affect the convexity.

Note from Eq. (22) that, the channel response y(t) will appear in the expectation of convex metric c(1)
k .

This is just to illustrate the composition of c(1)
k under different symbols αk. In practice, the calculation

of the three convexity metrics will rely only on the received concentration r(t), as in Eq. (19). By

directly employing the underlying received signal r(t) instead of the channel response y(t), the designed

convexity-based scheme can be regarded as a non-coherent detector.

With the above derivations, the expectation of the local convexity metric becomes:

E{ck} w αk × (µ1 + µ2 + µ3), µ1, µ2, µ3 > 0, (23)

where the constants µ1, µ2 and µ3 are three positive constants that are related with the channel convexity
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and the MA length L, i.e.,

µ2 ,
1

2
×

L−1∑
l=1

{y[T∆(k) + lTs] + y[T∆(k) + LTs − lTs)]

−y[T∆(k) + (l + 1)× Ts]− y[T∆(k) + LTs + (l + 1)× Ts]} ,

µ3 ,
1

2
×

L−1∑
l=1

{y[T∆(k) + lTs] + y[T∆(k) + LTs − lTs]

−y[T∆(k) + (l + 2)× Ts]− y[T∆(k) + LTs + (l + 2)× Ts]} .

In order to design a decision threshold, we should investigate the expected values of the constructed

convexity metric in the presence of different information bits. Provided that we have the zero-mean

counting noise, then the expectation of ck in the case of αk = 1 is approximated by:

E{ck|αk = 1} = λNL×

{
y [T∆(k)]− y

[
T∆(k)− L

2
Ts
]

4
+
y [T∆(k)]− y

[
T∆(k) + L

2
Ts
]

4
+

y
[
T∆(k)− L

2
Ts
]
− y [T∆(k)− LTs]
4

+
y
[
T∆(k) + L

2
Ts
]
− y [T∆(k) + LTs]

4

}
,

(24)

where λ is a weighting factor ranged from 0 to 1, and N denotes the total number of sub-metrics. Here,

we have N = 3. When the information bit of the kth duration is αk = 0, then the expected value will

become:

E{ck|αk = 0} → 0.

This is due to the fact the convexity metric ck involves two components in Eq. (22), i.e., the linear

combination of zero-mean noises and the other negligible self-interference term that is related with the

decay slope bk−k0 → 0.

3) Post-smoothing: A post-smoothing or post-filtering procedure is further suggested to reduce the

noise. In practice, a similar MA process will be used, i.e., c̆(k) = 1
2L0+1

×
∑k+L0

l=k−L0
ck,l, where the

averaging length L0 < L will be set to 2∼3.

Finally, a threshold γ will be used to determine whether the current convexity metric is sufficiently

dominant, and then the information bit of each interval will be estimated as in Eq. (25).

α̂k =

{
1, c̆k > γ,

0, c̆k ≤ γ.
(25)
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Here, the threshold γ is of importance to the design of the proposed non-coherent detector, as it serves

as a measure of the strength of local convexity.

4) Threshold design: It can be easily seen that, from the definition of convexity metrics in Eqs. (19)–

(20), the threshold γ will be related to three factors:

1) the length of each convexity sub-metric, namely L (recall that each sub-metric is the linear combi-

nation of L terms);

2) the total number of sub-metrics N ;

3) the specific convexity of the received concentration.

For the constructed metric, we have the following constraint relationships:

γ <
NL

2
×
{
y[T∆(k)]− y[T∆(k) + LTs] + y[T∆(k)− LTs]

2

}
, (26)

γ >
NL

4
× min

L1,L2,L3,L4∈[−L,L],
L1<L2≤L3<L4

{y[T∆(k) + L2Ts] + y[T∆(k) + L3Ts]− y[T∆(k) + L1Ts]− y[T∆(k) + L4Ts]} .

(27)

Here, the upper bound of the threshold γ is determined by the maximum convex value among all

combinations of received samples when constructing convex sub-metrics, as in Eq. (19). Recall the

molecular number will reach the local maximum at the time T∆(k) of the k-th symbol (see Fig. 2), while

one of the molecular number of times T∆(k)±LTs may achieve the minimum value. Thus, the maximum

value is specified by NL
2
×
{
y[T∆(k)]− 1

2
× {y[T∆(k) + LTs] + y[T∆(k)− LTs]}

}
. Similarly, the lower

bound of the threshold will be determined by the minimum convex value among all combinations, as in

Eq. (27).

With the equal priors of αk = 1 and αk = 0, the threshold is determined by:

γ ,
1

2
× (E{ck|αk = 1}+ E{ck|αk = 0})

' 1

2
× λNL×

{
y[T∆(k)]/2− y [T∆(k) + LTs] + y [T∆(k)− LTs]

4

}
.

(28)

It is found from Eqs. (24) and (28) that the threshold γ will be viewed as a linearly equal combination

of the median values in four secant lines, which can roughly reflect the convexity shape of the underlying

diffusion channel. Recall that, the convexity metric ck is also a linear combination of multiple median

values, so the designed threshold may produce the promising detection performance, as demonstrated

by subsequent simulations. However, the design of convexity metrics and the corresponding threshold
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remains an open problem. For example, the construction of the convex sub-metrics in Eq. (19) and the

combination strategy in Eq. (20) as well as the threshold may be optimised in future work.

Since the accurate channel response y(t) is unavailable for the non-coherent detection scenario, the

threshold γ can be in practice configured approximately via Eq. (29). In this simplest case, we use the

received sample r(k) as the instantaneous estimation of y(k) within a single interval, i.e.,

γ̂ =
1

2
× λNL×

[
r(T∆(k))/2− r (T∆(k) + LTs) + r (T∆(k)− LTs)

4

]
. (29)

Alternatively, an adaptive threshold γ̂(k) can be suggested to reduce the influence of noise and further

improve the detection performance. For the static channel with unknown response, we will have:

γ̂(k) ' (1− β)× γ̂(k − 1) + β × λNL

2|Ks|
∑
m∈Ks

[
r(T∆(m))

2
− r (T∆(m) + LTs) + r (T∆(m)− LTs)

4

]
,

(30)

where β is a forgotten parameter which is ranged in [0.9 0.99]; the initial threshold estimation can be set

to γ̂(0) = 0; Ks ⊂ {1, 2, · · · , k} accounts for a sub-set of the time slots where its convexity metric is

sufficiently large and |Ks| represents the number of elements, i.e.,

Ks =

{
m
∣∣∣1 ≤ m ≤ k, r(T∆(m))/2− r (T∆(m) + LTs) + r (T∆(m)− LTs)

4
> 0.5× σw

}
. (31)

It is seen that, as k increases, the effects of additive noise will vanish gradually and the adaptive

threshold γ̂(k) will converge to a stable value, i.e. γ(k) = γ(k − 1), and then we have

lim
k→∞

γ̂(k) = lim
k→∞

λNL

2
× 1

|Ks|
∑
m∈Ks

[
r(T∆(k))/2− r (T∆(k) + LTs) + r (T∆(k)− LTs)

4

]
=
λNL

2
×
[
y(T∆(k))/2− y (T∆(k) + LTs) + y (T∆(k)− LTs)

4

]
= γ.

(32)

In the designed adaptive threshold, there are three points need to be noteworthy in practice. (1) In

each symbol interval, the threshold γ(k) will be re-calculated, which is then used to detect the signal.

(2) For the static channel with an unknown response, the received signals of multiple intervals have been

utilized to improve the accuracy of the estimated threshold, as in Eq. (30). (3) For the variant channel,

the threshold could also adapt to channel changes based on the received signals. In the case, the sub-set

Ks will be redefined to {k−Kc+ 1, k−Kc+ 2, · · · , k}, where Kc accounts for the static length in which
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the channel is temporarily unchanged. The forgotten parameter β will reflect the correlation of varying

channels. Specifically, the higher the channel correlation, the smaller the forgotten parameter is. Consider

the fast varying channel with a low correlation for example, we may have Kc = 1 and β = 0.99, and

consequently, the threshold γ(k) will be estimated only based on the signal of the kth interval.

C. Theoretical Analysis

Since the convex sub-metrics c(i)
k (i = 1, 2, 3) are all based on the linear combination of the noisy

observation r(n), thus the constructed convexity metric ck will be Gaussian distributed under the i.i.d

noises. Thus, the likelihood distributions of the convexity metric ck in the case of two information bits

are respectively given by:

p{ck = x|αk = 1} ∼ N{x;E{ck|αk = 1},V{ck}}, (33)

p{ck = x|αk = 0} ∼ N{x; 0,V{ck}}. (34)

Here, V{ck} accounts for the variance of the convexity metric ck. It is seen that V{ck} will be related

with the specific construction method of each sub-metric c(i)
k (i = 1, 2, 3), the averaging length 2L+ 1 as

well as the noise variance σ2
w. For simplicity, we assume the analysis length L to be an odd integer. For

the i.i.d noise samples, we can further derive the variance of the convexity metric ck which is constructed

from Eqs. (19) and (20), i.e.,

V{ck} = σ2
w ×

[
L2 + 1 +

(
1

2

)2

× (2L− 4) + 2×
(

3

2

)2
]
,

= σ2
w × (L2 − 0.5L+ 4.5). (35)

Given the threshold in Eq. (28) and the equal priors for “0” and “1”, i.e., p(αk = 1) = p(αk = 0) = 0.5,

the theoretical error probability of the designed detection method can be calculated via:

PE = p(αk = 1)×
γ∫

0

p{x|αk = 1}dx+ p(αk = 0)×
∞∫
γ

p{x|αk = 0}dx,

=
1

2
erfc

(√
E2{ck|αk = 1}

8× σ2
w × (L2 − 0.5L+ 4.5)

)
. (36)

Note from Eq. (36) that the derived BER performance, which is similar to the theoretical result of the

OOK-based communications system [30], is related closely with the expectation of a convexity metric ck
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in the case of αk = 1. For the proposed non-coherent detector, the analytical BER curve will be unavailable

as the term E2{ck|αk = 1} cannot be determined due to the unknown channel response. However, the

theoretical BER curve demonstrates the influence of related parameters (e.g. L and σ2
w), which can be

used to validate the practical detection performance if E{ck|αk = 1} = 2γ can be estimated, e.g. based

on Eq. (30).

D. Complexity Analysis

It is found that the complexity of the new non-coherent scheme is approximately on the order of O(L2)+

O(L) summation operations, i.e., requiring no multiplication. The first term O(L2) comes from the moving

average operations, while the second term O(L) is attributed to the calculations of convexity metrics and

the threshold. For the previously mentioned coherent MAP scheme, the number of multiplications are

measured by O(2Iϑ), where ϑ accounts for the complexity of evaluating the involved likelihood function.

For a linear MMSE method, the computational complexity is O(I3). Thus, the required multiplications of

coherent detectors (e.g. O(I3)) increases rapidly with the increasing of I , whilst the required summations

of the new non-coherent scheme increases with O(L2).

IV. NUMERICAL SIMULATIONS

In the simulation studies, we focus on the processing of discrete time samples. While the sample

duration Ts may vary with different applications, the proposed non-coherent detection scheme is basically

independent of any specific Ts. Without loss of generality, the maximum concentration of y(t) is located

at tm = 14 × Ts. The information interval is set to Tb = 10 × Ts, i.e. Tb < tm. In order to simulate

the discrete channel response, the diffusion coefficient is D = 4.75 × 10−8m2/s, the distance is d=65nm

and the sampling time is Ts = 1.05 × 10−9s. It is easily noted that the received concentrations will be

always positive, as the ISI has usually a long-tail as demonstrated by measurement [12], [13], which will

be dominant to the additive counting noise. Given a high symbol rate, i.e. Tb < tm, severe ISI will occur

at the receiver after the transmitted signal have propagated via the diffusion channel. Each bit error ratio

(BER) curve is derived numerically based on 106 binary symbols. In the analysis, the average length is

set to L = 5 and a long ISI of I = 30× Tb is assumed. The signal to noise ratio (SNR) is defined as:

SNR , 10× log10E

(∑K
k=1 r

2
k

Kσ2
w

)
. (37)
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In the first experiment, we will investigate the effect from different configurations of the decision

threshold γ. It is shown by Fig. 3 that, for the suggested threshold in Eq. (30), the weighting factor λ

will have some impact on the detection performance. Taking SNR = 29 dB for example, the best BER

value of 2.25 × 10−3 will be achieved when λ = 0.5, while the worst BER is about 0.35 if λ = 0.01.

Meanwhile, we have noted that, in the high SNR regions (e.g., > 25 dB), the optimal λ is independent

of SNR. Thus, we may conclude that the weighting factor λ may be set to around 0.5 in practice.

For the non-coherent detection performance, we study the effect of different symbol durations Tb, for a

fixed peak concentration time of tm = 14×Ts. In order to construct the significant and effective convexity

metrics, the symbol duration Tb is expected to be larger than the peak diffusion time, i.e. Tb > tm. It is

easily understood that, the larger the symbol duration Tb, the weaker the ISI from the adjacent durations,

which also results in a more dominant convex shape. The conclusion has been verified by the simulation

results. As demonstrated in Fig. 4, if we increase the symbol duration from Tb = 20Ts w 1.43tm to

Tb = 30Ts w 2.15tm, then a rough detection gain of 2dB will be achieved by the non-coherent scheme.

Although the ISI can be reduced with a sufficiently large Tb, the resulting data rate will be restricted.

Fortunately, we can configure the symbol duration slightly smaller than a peak diffusion time when

pursuing the high data rate, Tb = 0.7 × tm. As shown by simulation results, in the serious ISI case

the designed non-coherent detection scheme can also acquire good BER performance. However, this is

achieved at the expense of low energy efficiency (e.g. requiring high SNR). In conclusion, the designed

scheme is relatively robust in the case that the symbol duration is smaller than tm, which is of promise

to promote the data rate of molecular communications.

In Fig. 5, we further plot the theoretical BER curves of our new detection scheme, in which the full

response is assumed to be known. Thus, the expectation on the convexity metric ck can be accurately

evaluated based on Eq. (28). We can see that, for the non-coherent detector, the theoretical BER curve in

Eq. (36) can be interpreted as the low bound, as the threshold γ (or the expectoration on the convexity

metric ck) can only be approximated in practice. From the comparative results in Fig. 5, it is found that

the simulation result agrees with the theoretical BER curves.

In Fig. 6, the BER performance of the proposed adaptive threshold in Eq. (30) as well as the threshold

calculated from Eq. (28) with a known channel response are plotted together. In the simulation, we

configure the forgotten parameter to β = 0.915. We can see that the adaptive threshold will basically

achieve the promising BER performance. It is noted that, in high SNRs (e.g > 26 dB), the calculated
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threshold based on a known channel response may lead to better BER performance. However, in lower

SNRs, the calculated threshold seems to be not accurate. That is mainly because, in the low SNRs (e.g.

SNR 6 25 dB), the optimal weighting factor λ would be deviated slightly from the configured value 0.5

(see Fig. 3), which may cause the slight degradation on the BER performance. In general, it is observed

that the adaptive threshold can be applied in practice.

A. Comparative Performance

In the second set of experiments, the exact channel response is assumed to be known by the two

previously mentioned coherent detection schemes i.e., the MAP or MMSE schemes, which, of course,

have to be obtained at the expense of sophisticated estimation techniques. In contrast, our proposed scheme

assumes that the channel response is blind to the non-coherent detection process. It is observed that, from

Fig. 7, the coherent MAP scheme can obtain the optimum detection performance, by maximizing the a

posteriori probability and mitigating the ISI to the minimum. The designed non-coherent detection scheme,

despite the dramatically reduced implementation compared with MAP or MMSE, is slightly inferior to

such coherent schemes. Taking the high SNR regime as an example (e.g., SNR > 22 dB), a detection

SNR gap between our proposed scheme and the MMSE scheme is approximately 2dB.

What is clear from our previous analysis is that, although classical coherent schemes may acquire

the more attractive detection performance, their implementation complexity O(I)3 will become easily

unaffordable as far as a large I is concerned. In order to reduce the computational complexity, as a

compromise, in practice the ISI length I would be truncated to a smaller value. E.g., in some energy-

constrained implementation scenarios, the processing length I could be restricted to 10. We observed from

Fig. 8 that, in this case, the MAP detector that changes and becomes comparable to the non-coherent

scheme which, yet, has a much lower complexity than both two coherent schemes. The proposed non-

coherent scheme will achieve a comparable performance with the MMSE method when I = 10.

B. Channel Estimation Error

Although channel parameter estimation is investigated in [31], to the best of our knowledge, the existing

work has not shown how the diffusion channel can be realistically estimated when it is time varying. The

challenge may probably lie in two aspects, i.e., the lack of a chemical pilot signal (due to the limited

chemical bandwidth) and the non-reciprocal nature of a diffusion channel. The reality is that the molecule

channel is not static and there are frequent disturbances aroused by both ambient flow (temperature
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differences) and active air flow (movement of bodies). Even when a pilot channel is available, the non-

reciprocal diffusion channel is still difficult to obtain accurately, due to its short coherence time. Typically,

the channel may change faster than the travel time of molecular signals.

We assume that, for the coherent detectors (i.e. MAP and MMSE), the channel estimation can be

available at a specific time, by resorting to the dedicated chemical pilot. However, the diffusion channel

will change randomly after a period of time. For example, the previous channel response CH1 may have

changed to CH2 due to unknown disturbance, as shown in Fig. 9(a). In most cases, coherent detectors will

be unaware of the time-variation of channel response. This is because, in practice, it is very expensive to

employ the bandwidth-demanding pilot to estimate the frequently changed channels for any times. Thus,

they would probably use the previously acquired CSI (with errors) until the dedicated chemical pilot can

be attainable again. For the non-coherent method, however we assume it will have no a priori information

on the CSI, and the threshold will be determined based on the received signals as in Eq. (30). Numerical

results in the presence of the varying diffusion channel are demonstrated by Fig. 9(b). As expected, since

the detection performances of the coherent detectors hinges on the channel estimation and, provided an

inaccurate CSI, their BER performances degrade significantly. From the simulation results in Fig. 9(b),

the SNR loss of 5dB may be observed in the MAP scheme. For the MMSE scheme, the BER floor may

even be demonstrated. It is noted that the proposed non-coherent detector relies on the local convexity

of diffusion channel response, which will also update its threshold based on the received signals after

the change in channel response. So, it is essentially independent of the channel estimation and is thereby

robust to unknown CSI. As demonstrated by Fig. 9(b), its BER performance will be affected slightly. This

provides great promise to the realistic application of the non-coherent detector.

V. CONCLUSIONS

A novel non-coherent signal detector is proposed for the emerging field of molecular communications.

The data rate of molecular communications is typically limited by severe ISI, which is difficult to avoid

due to the diffusion process. Whilst up-to-date accurate CSI is difficult to acquire and requires complex

signal processing operations, there exists common features in the diffusion channel that can be exploited

at the receiver side to suppress ISI. By utilizing the local convex features of the channel, the proposed

non-coherent detector can operate in the absence of channel estimations and mitigate ISI from multiple

symbols in high data rate transmissions. In certain channel scenarios, simulation results have shown

that the performance of the proposed blind detector can approach those achieved by high complexity
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coherent detectors. Yet, the signal processing implementation of the proposed non-coherent detector is

simple and involves only a number of summation operations. More importantly, it is found that the

BER performance of the designed scheme, which requires no explicit CSI, is relatively robust to time

varying channels. In general, the proposed low-complexity and non-coherent signal detector will be vital

to the realistic implementation of molecular communications, especially in the application of mobile

molecular communications between nano-robots in the area of nano-medicine, where the low-complexity

implementation is critical.

ACKNOWLEDGMENT

This work of B. Li was supported by Natural Science Foundation of China (NSFC) under Grants

61471061 and the Fundamental Research Funds for the Central Universities under Grant 2014RC0101.

The work of S. Wang was in part supported by the Research Development Fund (RDF-14-01-29) of Xi’an

Jiaotong-Liverpool University.

REFERENCES

[1] I. F. Akyildiz, J. M. Jornet, and M. Pierobon, “Nanonetworks: A new frontier in communications,” Communications of the ACM,

vol. 54, no. 11, pp. 84–89, Nov. 2011.

[2] I. F. Akylidiz, F. Fekri, R. Sivakumar, C. Forest, and B. Hammer, “Monaco: fundamentals of molecular nano-communication networks,”

IEEE Wireless Communications, vol. 19, no. 5, pp. 12–18, May 2012.

[3] T. Nakano, A. Eckford, and T. Haraguchi, Molecular Communications. Cambridge University Press, Oct. 2013.

[4] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, and T. Nakano, “Molecular communication,” in Proceedings

of the NSTI Nanotechnology Conference and Trade Show, 2005, pp. 391–394.
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     Fig. 1. A physical-layer schematic structure of molecular communications.
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Fig. 2. The linear approximation of ISI generated from the previous concentration.
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Fig. 3. BER performance of the non-coherent detector with various threshold configurations or different weighting factors.
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Fig. 5. Theoretical BER performance vs simulation results.
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