79 research outputs found

    Asian Infrastructure Investment Bank (AIIB)'s sustainable safeguard mechanism on energy projects

    Get PDF
    Asian Infrastructure Investment Bank (AIIB) was officially established by China in 2016 with one of the aims to develop energy infrastructure based on green and sustainable principles in Asia. To achieve that, AIIB has set forth safeguard policies, including the Environmental and Social Framework (ESF) applied for funded projects and the AIIB Energy Sector Strategy, to guide its energy investments. However, the effects of the safeguard policies and further safeguard operations on the energy projects remain unknown. This study reviews AIIB's safeguard mechanism on energy projects, including the safeguard policies, assessment and management plans, and implementations of AIIB's energy projects. We find that AIIB's current safeguard mechanism on energy projects, in comparison with other established multilateral development banks (MDBs), is still at its beginning stage, which does not match its goal and promise on sustainable energy development in Asia

    Cardiac abnormalities after induction of endoplasmic reticulum stress are associated with mitochondrial dysfunction and connexin43 expression

    Get PDF
    The endoplasmic reticulum (ER) is responsible for protein synthesis and calcium storage. ER stress, reflected by protein unfolding and calcium handling abnormalities, has been studied as a pathogenic factor in cardiovascular diseases. The aim of this study is to examine the effects of ER stress on mechanical and electrophysiological functions in the heart and explore the underlying molecular mechanisms. A total of 30 rats were randomly divided into control, ER stress inducer (tunicamycin[TN]) and ER stress inhibitor (tunicamycin+4-phenylbutyric acid [4-PBA]) groups. ER stress induction led to significantly systolic and diastolic dysfunction as reflected by maximal increasing/decreasing rate of left intraventricular pressure (±dp/dt), left ventricular peaksystolic pressure(LVSP) and LV end-diastolic pressure(LVEDP). Epicardial mapping performed in vivo revealed reduced conduction velocity and increased conduction heterogeneity associated with the development of spontaneous ventricular tachycardia. Masson’s trichrome staining revealed marked fibrosis in the myocardial interstitial and sub-pericardial regions, and thickened epicardium. Western blot analysis revealed increased pro-fibrotic factor transforming growth factor-β1 (TGF-β1), decreased mitochondrial biogenesis protein peroxlsome proliferator-activated receptor-γ coactlvator-1α (PGC-1a), and decreased mitochondrial fusion protein mitofusin-2 (MFN2). These changes were associated with mitochondria dysfunction and connexin 43(CX43)translocation to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA. Our study shows that ER stress induction can produce cardiac electrical and mechanism dysfunction as well as structural remodelling. Mitochondrial function alterations are contributed by CX43 transposition to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA

    Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK

    Get PDF
    Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD(+) levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose

    Revealing intrinsic domains and fluctuations of moir\'e magnetism by a wide-field quantum microscope

    Full text link
    Moir\'e magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront condensed matter physics research. Nanoscale imaging of moir\'e magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moir\'e domains of opposite magnetizations appear over arrays of moir\'e supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moir\'e magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland

    Room-temperature conversion of ethane and the mechanism understanding over single iron atoms confined in graphene

    Get PDF
    Abstract(#br)The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources. However, it is a great challenge due to the typically required high temperature (> 400 °C) conditions. Herein, a highly active catalytic conversion process of ethane at room temperature (25 °C) is reported on single iron atoms confined in graphene via the porphyrin-like N 4 -coordination structures. Combining with the operando time of flight mass spectrometer and density functional theory calculations, the reaction is identified as a radical mechanism, in which the C–H bonds of the same C atom are preferentially and sequentially activated, generating the value-added C 2 chemicals, simultaneously avoiding the over-oxidation of the products to CO 2 . The in-situ formed O–FeN 4 –O structure at the single iron atom serves as the active center for the reaction and facilitates the formation of ethyl radicals. This work deepens the understanding of alkane C–H activation on the FeN 4 center and provides the reference in development of efficient catalyst for selective oxidation of light alkane

    Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark

    Get PDF
    Purpose: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysis up to 91% average precision has been reported for phase recognition on an open data single-center video dataset. In this work we investigated the generalizability of phase recognition algorithms in a multicenter setting including more difficult recognition tasks such as surgical action and surgical skill. Methods: To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12 research teams trained and submitted their machine learning algorithms for recognition of phase, action, instrument and/or skill assessment. Results: F1-scores were achieved for phase recognition between 23.9% and 67.7% (n = 9 teams), for instrument presence detection between 38.5% and 63.8% (n = 8 teams), but for action recognition only between 21.8% and 23.3% (n = 5 teams). The average absolute error for skill assessment was 0.78 (n = 1 team). Conclusion: Surgical workflow and skill analysis are promising technologies to support the surgical team, but there is still room for improvement, as shown by our comparison of machine learning algorithms. This novel HeiChole benchmark can be used for comparable evaluation and validation of future work. In future studies, it is of utmost importance to create more open, high-quality datasets in order to allow the development of artificial intelligence and cognitive robotics in surgery
    • …
    corecore