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ABSTRACT

Purpose: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical
assistance systems. These systems could increase the safety of the operation through context-sensitive warnings
and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical
workflow analysis up to 91% average precision has been reported for phase recognition on an open data single-
center video dataset. In this work we investigated the generalizability of phase recognition algorithms in a
multicenter setting including more difficult recognition tasks such as surgical action and surgical skill.
Methods: To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers
with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases
with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments
from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the
2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12
research teams trained and submitted their machine learning algorithms for recognition of phase, action, in-
strument and/or skill assessment.

Results: F1-scores were achieved for phase recognition between 23.9% and 67.7% (n = 9 teams), for instrument
presence detection between 38.5% and 63.8% (n = 8 teams), but for action recognition only between 21.8% and
23.3% (n = 5 teams). The average absolute error for skill assessment was 0.78 (n = 1 team).

Conclusion: Surgical workflow and skill analysis are promising technologies to support the surgical team, but
there is still room for improvement, as shown by our comparison of machine learning algorithms. This novel
HeiChole benchmark can be used for comparable evaluation and validation of future work. In future studies, it is
of utmost importance to create more open, high-quality datasets in order to allow the development of artificial

intelligence and cognitive robotics in surgery.

1. Introduction

Surgical workflow and skill analysis are key technologies for the
development and seemingless integration of artificial intelligence sys-
tems (Al) in the operating room (OR) and thus a main building block of
surgical data science (Maier-Hein et al., 2022). Surgical Al systems may
increase the safety and efficiency of the operation through early
context-sensitive warnings (Katic¢ et al., 2013), OR management (Tanzi
et al., 2020) and procedure time prediction (Aksamentov et al., 2017;
Bodenstedt et al., 2019), continuing surgical education (Maier-Hein
et al., 2017) and professional development (Greenberg et al., 2018) by
objective assessment of surgical skill and competency (Funke et al.,
2019; Hashimoto et al., 2019; Vedula et al., 2017), as well as
semi-autonomous assistance (Lalys and Jannin, 2014; Vercauteren et al.,
2020). Surgical Al may also help to locate critical events in surgical
videos and document safety measures (Korndorffer et al., 2020; Mas-
cagni et al., 2021). Furthermore, if today’s robotic telemanipulators are
to become cognitive assistance systems, which perceive their environ-
ment, interpret it according to previous experience and perform a
context-aware action in a semi-autonomous way, they will have to un-
derstand the surgical workflow and learn from the skilled surgeons
(Maier-Hein et al., 2022; Wagner et al., 2021). Thus, surgical workflow
and skill analysis are a prerequisite for the next generation of surgical
robotics.

A great obstacle to train the underlying machine learning (ML) al-
gorithms to created Al applications in surgery is the lack of high quality
annotated datasets (Maier-Hein et al., 2021). The use of ML has been
successfully researched on the basis of annotated non-surgical data
(Topol, 2019). At the same time, research on surgical data, especially
laparoscopic videos is comparatively underrepresented, even though the
availability of surgical video data is increasing thanks to time-efficient
and cost-effective recording and storage of those videos. A reason may
be that the process of video annotation with meaningful information for
ML is time-consuming and laborious. As a result, only few surgical video
datasets are openly available for research, even though the publication
rate for the analysis of surgical procedures has increased in recent years
(Loukas, 2018). For instance, the Cholec80 dataset contains videos of 80
laparoscopic cholecystectomies from a single center and annotation of
surgical phase and instrument presence with a phase recognition
average precision of up to 91% (Twinanda et al., 2017). Similar results
have been reported on a larger multicenter dataset of 1243 laparoscopic

cholecystectomies, but this data is not openly available (Bar et al.,
2020). Another open dataset is the Heidelberg colorectal dataset. It
comprises 30 videos of three different types of laparoscopic colorectal
surgeries, corresponding sensor data from medical devices in the OR and
pixel-wise semantic segmentation of surgical instruments (Maier-Hein
et al., 2021). The successful use of the Heidelberg Colorectal dataset
during the Endoscopic Vision (EndoVis) challenges 2017 (https://endov
issub2017-workflow.grand-challenge.org/) and 2019 (https://robust
mis2019.grand-challenge.org/) is an example for the comparative vali-
dation of ML algorithms to explore an optimal solution for surgical
problems. Apart from laparoscopy, surgical workflow has been investi-
gated in ophthalmology. The CATARACTS Challenge presented suc-
cessful results on instrument presence detection during cataract surgery
using computer vision algorithms (Al Hajj et al., 2019). Though all three
datasets used clinical patient videos as the basis for their annotations,
they are limited in their transferability, because they do not sufficiently
reflect the diversity of clinical data in a multicenter setting. Further-
more, they focus on a limited variety of annotated features.

In contrast, the preclinical JIGSAWS dataset for gesture and skill
analysis contains kinematic and video data of surgical tasks with
detailed action and skill annotation (Ahmidi et al., 2017). However,
JIGSAWS does not contain real patient data. Due to their achievements,
EndoVis (https://endovis.grand-challenge.org/) (28%), Cholec80
(21%), and JIGSAWS (17%) were mentioned as the most useful publicly
available datasets for surgical data science (Maier-Hein et al., 2022), but
there is still an urgent demand in the scientific community and medical
device industry for high-quality datasets from laparoscopic surgery that
allow a comparison of ML algorithms (Maier-Hein et al., 2022).

Apart from this, it is generally important to view medical recognition
challenges with caution due to the lack of standardized and evidence-
based quality control. For example, it is possible for later participating
teams to boost their performance if the test data has been published
(Maier-Hein et al., 2018). Moreover, standardized phase definitions are
missing in the existing datasets, especially for laparoscopic cholecys-
tectomy (Garrow et al., 2020; Meireles et al., 2021). Since the repro-
ducibility of research results is an important element of science, a
standardized benchmark for comparing such results is of great
importance.

In this study we aim to counteract this deficiency and propose an
open benchmark for surgical workflow and skill analysis by providing a
state of the art comparison of ML algorithms on a novel and publicly
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accessible clinical multicenter dataset. Specifically, our study aimed at
answering the following research questions:

(1) Can the previously reported performance in recognition of sur-
gical phase and surgical instrument be reproduced on this dataset
by independent researchers?

(2) What performance can be achieved for recognition tasks more
difficult than phase recognition such as surgical action (often
brief and subtle) and surgical skill (holistic assessment of the
whole video)?

2. Dataset

The structure of this paper follows the BIAS statement for transparent
reporting of biomedical image analysis challenges (Maier-Hein et al.,
2020) and includes the structured challenge design in Appendix B. The
creation of the challenge dataset is described including annotations for
surgical phase, action, instrument and skill. Then, the challenge design
and a description of the competing ML algorithms are described.

2.1. Data collection

The dataset contains n = 33 videos of laparoscopic cholecystectomies
from three surgical centers in Germany with a total video length of 22 h.
The total number of cases was chosen based on annotation capacity. The
operation videos at Heidelberg University Hospital (n = 15) were
recorded with a laparoscopic 2D camera (Karl Storz SE & Co KG, Tut-
tlingen Germany) with 30° optics, a resolution of 960 x 540 pixels and
25 frames per second. The operation videos at Salem Hospital (n = 15)
and the GRN-hospital Sinsheim (n = 3) were recorded with the laparo-
scopic 2D camera ENDOCAM Logic HD (Richard Wolf GmbH, Knit-
tlingen, Germany) with 30° optics, a resolution of 1920 x 1080 pixels
and for the greater part 50 frames per second. Three operations at Salem
Hospital were recorded with a resolution of 720 x 576 pixels and 25
frames per second. Every video starts at the first insertion of the lapa-
roscopic camera into the patient’s abdomen and ends with the last
removal of the laparoscopic camera.

The videos were split into the training (n = 24) and test (n = 9)
dataset. In the training dataset, videos from Heidelberg University
Hospital and Salem Hospital are equally represented (n = 12 each). In
the test dataset, all three centers are equally represented (n = 3 each).
Assignment to training or test dataset was performed randomly with
stratification by center. The total number of test cases was chosen to
maximize the ability to generalize and evaluate while maintaining a
large enough training set.

To comply with ethical standards and the general data protection
regulation of the European Union, routinely collected data was used and
anonymized. To this end, scenes outside the abdominal cavity, for
example when the camera was pulled out for cleaning purposes, were
manually censored (frames were replaced with white frames) and files
were renamed anonymously (HeiChole-1, HeiChole-2 etc.).

2.2. Data annotation

The anonymized video data were annotated with surgical knowledge
by specifically instructed medical students following annotation rules in
Appendix A. Annotation, i.e. labeling of each video frame with infor-
mation about what is depicted in this frame, was performed using the
video annotation research tool Anvil (Kipp, 2014). The annotation
included framewise annotation of surgical phases, actions and in-
struments as well as skill and difficulty classification for procedures and
selected phases. Thus, different perspectives of the surgical activity were
annotated. According to Neumuth et al. a surgical activity consists of
five components (Neumuth et al., 2009), which are the functional,
organizational, operational, spatial and behavioral perspectives. In this
study, all perspectives ecxemt the spatial were annotated. The
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performed action describes what is done (functional, e.g. “grasp”, see
paragraph “Action”) and is defined as a sequence of related gestures. The
performer of the action (organizational, e.g. “left hand of the surgeon™)
and the surgical instrument used (operational, e.g. “atraumatic grasper”,
see paragraph “Instrument”) were annotated in relation to the exact time
(behavioral, framewise annotation of the video). An example of a
comprehensive annotation would be “the left hand of the surgeon per-
forms the grasping and holding action with the atraumatic grasper at 10
min and 15 s after start of the operation”. Whereas the hand is not visible
in the image, in the standardized procedure of laparoscopic cholecys-
tectomy the performing hand can be deducted from the position of the
instrument.

To ensure standardization and reproducibility of annotation as well
as to minimize sources of error, explicit rules were formulated for phase,
action and instrument annotation. An identical procedure was followed
for both training and test cases. The annotation rules are enclosed in
Appendix A. Surgical phase (see Section 2.2.1. Phase) was annotated
analogous to the Cholec80 dataset (Twinanda et al., 2017), surgical skill
and difficulty (see Section 2.2.4. Skill) were annotated using modified
Global Operative Assessment of Laparoscopic Skills (GOALS) score
(Vassiliou et al., 2005) as extended by Chang et al. (Chang et al., 2007).
In order to increase the reliability of the annotation, the phases were
annotated independently by three specifically instructed medical stu-
dents and the surgical skill and difficulty by two specifically instructed
medical students. Possible error sources occurred with disagreement on
the beginning or end of a phase or the skill level. Deviations were dis-
cussed and resolved by consensus between the same students. Final
consensus annotations as well as raw annotations for phases before
consensus can be downloaded from the challenge website on Synapse
(see Section 4.3. HeiChole benchmark & online leaderboard).

According to the BIAS statement, a case in our dataset encompassed
all data for which the algorithm(s) participating in a specific challenge
task produced one result. One case comprises three videos, a full lapa-
roscopic cholecystectomy, all frames of the phase calot triangle dissec-
tion (P1) and all frames of the phase gallbladder dissection (P3),
respectively. Annotations for surgical phase were one value per frame.
Annotations for action were a 4D binary vector per frame indicating if
the corresponding action is being performed (1) or not (0)). Annotations
for instrument category were a 21D binary vector per frame, consisting
of 7 instrument categories used during the EndoVis challenge, one un-
defined instrument shaft plus 14 unused categories reserved for future
additions like further grasping instruments, with each entry indicating if
the corresponding instrument category is visible (1) or not (0)). Anno-
tations for instruments were a 31D binary vector per frame, consisting of
21 instruments used during the EndoVis challenge, one undefined in-
strument shaft plus 9 unused instruments reserved for future additions,
with each entry indicating if the corresponding instrument category is
visible (1) or not (0)). Surgical skill was annotated in five different di-
mensions, each ranked with integer values between 1 and 5, for each of
the three videos full operation, P1 and P3.

2.2.1. Phase

For the surgical phases, one of seven surgical phases was assigned to
each individual frame, analogous to the Cholec80 dataset (Twinanda
etal., 2017) following the annotation protocol in Appendix A. The seven
phases were preparation (PO), calot triangle dissection (P1), clipping
and cutting (P2), gallbladder dissection (P3), gallbladder packaging
(P4), cleaning and coagulation (P5) and gallbladder retraction (P6). The
phases did not necessarily occur in a fixed order.

2.2.2. Action

The surgical action is the functional component of the activity a
surgeon performs within a phase. Action was annotated as performed
following the annotation protocol in the appendix, if any of the four
actions grasp (A0), hold (A1), cut (A2) or clip (A3) occurred. Addi-
tionally, the performer of the action (organizational component) was
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annotated as the left hand of the surgeon, right hand of the surgeon or
hand of the assistant.

2.2.3. Instrument

Instrument presence detection is important for surgical workflow
analysis because it correlates with the current surgical phase. A total of
21 instruments (plus “undefined instrument shaft™) of different types
were annotated and additionally grouped into the seven categories
grasper (ICO0), clipper (IC1), coagulation instruments (IC2), scissors
(IC3), suction-irrigation (IC4), specimen bag (IC5), and stapler (IC6).
Because more than one instrument may be present at the same time,
annotation of instrument visibility was performed separately for each of
the 21 instrument types and for the challenge metrics were computed
separately per instrument category. Furthermore, in different surgical
centers, instruments by different vendors were used, which increases the
representativeness of this dataset. The stapler was not present in the test
dataset. For instrument presence, an instrument was annotated visible as
soon as its characteristic instrument tip appeared in the image. The
annotation continued when the tip disappeared later and only the shaft
of the instrument remained visible. If the instrument shaft entered the
field of view of the camera without its tip having been visible before, it
was referred to as the "undefined instrument shaft", because even a
human annotator would not be able to recognize a particular instrument
due to the identically looking shafts. Three exceptions to this rule were
the suction-irrigation, stapler and the clipper categories, as these in-
struments have characteristic shafts. Fig. 1 shows sample images of the
instruments from the dataset.

2.2.4. Skill
To assess the surgical skill, the videos were scored using the modified
Global Operative Assessment of Laparoscopic Skills (GOALS). It has been
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validated for video assessment of laparoscopic skills, including the five
domains depth perception (S1), bimanual dexterity (S2), efficiency (S3),
tissue handling (S4) and autonomy (Vassiliou et al., 2005). The item
"autonomy" was omitted in our study, because a valid assessment based
solely on intraabdominal video alone is not possible without informa-
tion about what was spoken during the operation or how much assis-
tance was provided by a senior surgeon. The difficulty of the operation
(S5) was additionally annotated based on Chang’s adaptation of the
GOALS-score (Chang et al., 2007) . Here, parameters such as inflam-
matory signs, adhesions and individual anatomical conditions were used
to objectify the assessment of the skill. Thus, the skill assessment in this
study included five ranking components. Skill was annotated for the
complete operation and additionally for phases calot triangle dissection
(P1) and gallbladder dissection (P3).

3. Methods
3.1. EndoVis challenge 2019

Based on our dataset, 12 international teams trained and evaluated
their algorithms during the EndoVis challenge 2019 within the sub-
challenge for “Surgical Workflow and Skill Analysis” hosted in
conjunction with the Medical Image Computing and Computer Assisted
Intervention conference (MICCAL https://endovissub-workflowandskill
.grand-challenge.org/). The aim of this sub-challenge was to investigate
the current state of the art on surgical workflow analysis and skill
assessment in laparoscopic cholecystectomy on one comprehensive
dataset. Specifically, the aims were (1) surgical phase recognition with
high precision and recall, (2) surgical action recognition with high
precision and recall, (3) surgical instrument presence detection with
high precision and recall as well as (4) surgical skill assessment with a

Fig. 1. Instruments in the HeiChole benchmark. Examples of all 21 surgical instruments plus undefined instrument shaft present in the HeiChole benchmark
arranged according to the eight categories grasper (IC0), clipper (IC1), coagulation instruments (IC2), scissors (IC3), suction-irrigation (IC4), specimen bag (IC5),

staper (IC6), undefined instrument shaft (IC20).

Instruments are curved atraumatic grasper (I0), toothed grasper (I1), fenestrated toothed grasper (I12), atraumatic grasper (I3), overholt (14), LigaSure (I5), electric
hook (16), scissors (I7), clip-applier metal (I8), clip-applier Hem-O-Lok (I9), swab grasper (I10), Argon beamer (I11), suction-irrigation (I112), specimen bag (I113),
tiger mouth forceps (114), claw forceps (I15), atraumatic grasper short (I116), crocodile grasper (I117), flat grasper (118), pointed grasper (I119), stapler (120) and
undefined instrument shaft (I30). Numbers 121 to 129 have been reserved for future additions.
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low mean absolute error. Before acceptance as a MICCAI challenge, the
challenge protocol underwent a peer review process.

Participants were invited to submit a Docker image and a description
of the used method(s). For the submission process, participants had to
register for the challenge on Synapse (HeiChole Benchmark Website,
2022), upload their Docker container(s) to that project and then submit
the appropriate version(s) to the challenge. The container(s) had to
implement an interface that took a video as input, preprocessed it if
necessary, computed the appropriate challenge results, and output these
in CSV file(s). Only full submissions, i.e. with no results missing, for each
task were considered.

The Docker images were not and will not be shared with any third
party by the organizers. Each team could choose to provide their source
code, though they were not required to. Only automatic methods, i.e.
not needing any human input during runtime, were accepted. Partici-
pants were encouraged to provide results for recognition of surgical
phase, action and instrument as well as skill assessment, but it was not
required to submit in all categories and participants were free to provide
results for a subset. To reduce the complexity of the challenge, not every
annotation of the dataset described above was used for the challenge.
The action recognition did not include the recognition of the performer
of an action. The instrument presence detection did not include the
category undefined instrument shaft (IC20).

Participants were free to use third party public data to augment the
provided training data. Submissions were “online analysis only”, i.e.
methods were not allowed to use information from future frames. We
chose “online analysis only” because from a clinical perspective our aim
with this work was to develop methods usable for context-aware intra-
operative assistance and cognitive robotics. These intraoperative assis-
tance systems only have information about current and past video, but
not the whole procedure. In contrast, this is not necessary for skill
assessment, because this will not generate an intraoperative assistance
but feedback after surgery. However, “online analysis only” was not
specifically enforced, because it would have placed many restrictions
onto the interfaces to the model and would have complicated the eval-
uation process greatly. Thus, it was trusted that the participants would
adhere to the code of honor. In the case of skill assessment, an entire
video could be used as input, because the skill was also annotated for
video as a whole.

The challenge committee members were M. Wagner, S. Bodenstedst,
A. Kisilenko, H. Kenngott, L. Maier-Hein, S. Speidel and B. Miiller-Stich
with affiliations as stated in the authors list. The award policy was to
award a prize to each winner of one of the four tasks, if at least three
participants entered a submission. Members of the organizing institutes
were allowed to participate, but were not eligible for awards.

All participants agreed for their results and method description to be
published in the challenge paper before participating in the challenge by
sending a signed agreement form before access to the challenge data was
granted. Apart from that all members of all participating teams were
offered coauthorship to this manuscript according to the challenge
protocol. For the one participant that did not respond to approve the
manuscript, coauthorship was removed, but the person was mentioned
in acknowledgements according to standard publication ethics.

On May 31st 2019, the first part of the training dataset consisting of
12 videos was published, followed by the second part, also consisting of
12 videos, on August 15th 2019. With the second part, the organisers’
evaluation software scripts for computing metrics and rankings were
provided. The evaluation and submission period of the Docker con-
tainers was between October 1st and 7th 2019. The challenge day was
on October 13th 2019. On this day, the results of all teams were pre-
sented during the EndoVis challenge meeting at the MICCAI in Shenz-
hen, China. Before publication of the joined paper, no results were
allowed to be published.
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3.2. Participating teams

The following sections provide a detailed description of the algo-
rithms of the participating teams in alphabetical order. In addition,
Table 1 gives an overview of the different methods sorted by teams,
because we encouraged the teams to submit multi-task approaches, i.e.
methods that produce a solution for more than one problem from the
given input, e.g. a deep learning model that has two outputs, one for
phase and one for instrument recognition. To allow for easier compar-
ison between different methods for one task, we provide three separate
tables Tables C1, C2, C3 Table for phase, action and instrument recog-
nition in Appendix C.

3.2.1. Team CAMI-SIAT (Phase)

The CAMI-SIAT team proposed a method for determining surgical
phases based on Pseudo-3D residual networks (ResNet) (Qiu et al.,
2017). Through the usage of a 3D convolutional network, temporal in-
formation from previous frames in an operation could be utilized
directly to determine the current surgical phase. Further, they hypoth-
esized that fusing the predictions of the Pseudo-3D residual network
with prior knowledge would improve performance. For this, they
determined the probability of occurrence of each phase at a given time
point in the operations from the training data and applied them to the
output of the network for the final prediction. No additional data was
used for pre-training.

3.2.2. Team CAMMA (Phase & action)

For the phase recognition, the CAMMA team utilized two different
methods for image feature extraction in parallel: Inflated-3D (I3D)
(Carreira and Zisserman, 2017), a 3D, and an Inception-ResNet (Szeg-
edy et al., 2016), a 2D convolutional network. The aim of mixing 3D and
2D convolutions was to capture fine-grained temporal dynamics from
the data. The convolutional networks were followed by 3
long-short-term memory (LSTM) units, one for each preceding feature
extractor and one for the combined features. The predictions of the 3
LSTMs were then merged via majority-voting. During training, the bi-
nary instrument data was also used as an additional task for enhancing
the results of the workflow recognition. ImageNet and Kinetics were
used for pre-training. CAMMA submitted two models for phase recog-
nition, one with and one without pre-training. Both models were
analyzed separately.

For the action recognition, team CAMMA built on a ResNet (He et al.,
2015) for feature extraction, which was extended with a convolutional
LSTM to take temporal information into account (Nwoye et al., 2019).
Following the LSTM, a combination of a convolutional layer and a
fully-connected layer were utilized for higher-level reasoning on the
spatio-temporal features for surgical action recognition. ResNet was
pretrained on ImageNet.

3.2.3. Team CareSyntax (Instrument & skill)

For the instrument presence detection, team CareSyntax utilized the
approach outlined in (Vardazaryan et al., 2018) , which combined a
ResNet (He et al., 2015) with additional convolutional layers, so called
localization maps, that helped to map features corresponding to a clas-
sification to their spatial coordinates. A spatial pooling was then utilized
to determine which instrument classes were currently in use. ImageNet
and Cholec80 were used for pre-training.

For the skill assessment team CareSyntax utilized a method based on
(Funke et al., 2019) . The method relied on a 3D-ResNet (Wang et al.,
2016) for feature extraction. The method divided a given video into
multiple segments, each segment was then fed into the 3D-ResNet. To
concatenate the results of the segments, team CareSyntax used a
fully-connected layer. The final scores were then computed by rounding
the output of the network to the nearest integer. Kinetics was used for
pre-training.



Table 1
Overview of algorithms. The submissions of the teams participating in the EndoVis challenge are presented with components of their machine learning methods for the specific tasks. 3.3. Statistical Analysis.
Team Task(s) Multi-Task Basic architecture (Additional) Output component Post-processing Pretraining Data Loss function Optimizer
temporal augmentation (s)
component
CAMI-SIAT Phase No Pseudo-3D Residual Network ~ None (3D Output of the None None RGB shift, Binary cross- Adam (
(Qiu et al., 2017) architecture) network is fused brightness and entropy loss Kingma and
with the prior contrast changes, Ba, 2017)
probability of each drop-out of frames
surgical phase
CAMMA Phase Yes (Instrument  Parallel I3D(Carreira and 3 LSTMs (192, Majority voting to None Inception-ResNet None Binary cross- RMSProp (
recognition was  Zisserman, 2017) and 512 and 512 aggregate the pretrained on entropy loss Hinton et al.,
used as an Inception- ResNet (Szegedy units) outputs of the three ImageNet ( 2012)
auxiliary task) et al., 2016) LSTMs Russakovsky et al.,
2015) and i3D
pretrained on
Kinetics (Kay et al.,
2017)
Action No ResNet-50 (He et al., 2015) Convolutional A combination of None ResNet pretrained on ~ None Binary cross- Momentum
LSTM (512 convolutional layer ImageNet entropy loss Optimizer
units) and fully-connected
layer connected to
the LSTM
CareSyntax Instrument No ResNet-18 (He et al., 2015) None Convolutional None ImageNet and Rotation and Weighted SGD (Kiefer
layers, spatial Cholec80 (Twinanda  horizontal flip cross-entropy and
pooling, fully et al., 2017) loss Wolfowitz,
connected layer 1952)
Skill No 3D ResNet-18 None (3D Concatenation of None Kinetics Resizing with Mean squared SGD (Kiefer
architecture) results using fully- central cropping, error and
connected layer random Wolfowitz,
horizontal flip 1952)
CUHK Phase Yes ResNet-50 () LSTM (512 Fully-connected
units), elapsed layers connected to
time as input LSTM and
instrument output
Phase & Median filter on ResNet Cropping, flipping, Categorical SGD (Kiefer and
Action: preceding pretrained on mirroring and color jitter cross-entropy Wolfowitz, 1952)
Fully- frames, Prior ImageNet, all loss
connected Knowledge pretrained with
layers Inference (Jin Cholec80
connected to et al., 2018)
LSTM
Instrument None Fully-connected Binary cross-
layer entropy loss
HIKVision Phase Yes ResNet-50 () LSTM Fully-connected Prior Knowledge  ResNet pretrained on ~ Random crop, Categorical SGD (Kiefer
layer per task, Inference (Jin ImageNet rotation and flip cross-entropy and
connected to the et al., 2018) loss Wolfowitz,
LSTM 1952)
Instrument Binary cross-
entropy loss
IGITech Phase No ResNet-50 () None Support Vector None ResNet pretrained on ~ Random Binary cross- SGD (Kiefer
Machine ImageNet translation, entropy loss and
rotation, flip Wolfowitz,
1952)
Instrument Fully-connected
layer
Action Yes None None

(continued on next page)
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Table 1 (continued)

Multi-Task

Team Task(s) Basic architecture (Additional) Output component Post-processing Pretraining Data Loss function Optimizer
temporal augmentation (s)
component
Konica ResNeXt-101 (Xie et al., Fully-connected ResNeXt pretrained Random Binary cross- SGD (Kiefer
Minolta 2017) with layer per task on ImageNet translation, entropy loss and
Squeeze-and-Excitation rotation, resizing, Wolfowitz,
block (Hu et al., 2018) horizontal flip and 1952)
contrast changes
Instrument
MEVIS Phase Yes ResNet-50 () LSTM (512 Fully-connected None ResNet pretrained on ~ Random crop and Categorical Adam (
units) layer per task, ImageNet and horizontal flip cross-entropy Kingma and
connected to the Cholec80 loss, Binary Ba, 2017)
LSTM Cross-entropy
loss
NCT Phase Yes ResNet-50 LSTM (512 Fully-connected None ResNet pretrained on ~ None Categorical Adam (
units) layer per task, ImageNet, all cross-entropy Kingma and
connected to the pretrained with loss Ba, 2017)
LSTM Cholec80
Action Dice loss
Instrument
VIE-PKU Phase Yes Parallel ResNet-101 () and None (3D Fully-connected Prior Knowledge  ResNet and 13D None Binary cross- Adam (
I3D (Carreira and Zisserman,  architecture) layer connected to Inference (Jin pretrained on entropy loss Kingma and
2017) features et al., 2018), ImageNet, I3D Ba, 2017)
Inter- and pretrained on
intra-task Kinetics
correlation
Action Weighted
Binary cross-
entropy loss
Instrument
Wintegral Phase Yes (Single and ResNet-50 () None Results from None ResNet pretrained on  Contrast changes, Categorical Adam (
multi-task different models are ImageNet color jitter, center  cross-entropy Kingma and
models) aggregated, one crop loss Ba, 2017)
regressor per task
Action Binary cross-
entropy loss
Instrument
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3.2.4. Team CUHK (Phase & instrument)

To recognize phase and instrument, team CUHK implemented a
multi-task approach. A ResNet (Qiu et al., 2017) was used to extract
visual features from a given laparoscopic image. The features were used
to a) determine which laparoscopic instruments were currently visible
via a fully-connected layer and b) to determine the current surgical
phase via a LSTM. For the phase recognition task, the elapsed time,
normalized via the average duration of all surgeries in the training
dataset, was concatenated to the feature representation. The output of
the network was then post-processed: a median filter was applied to
phase predictions with low probability and the PKI strategy (Jin et al.,
2018), which takes phase order and consistency into account, was uti-
lized to detect and correct impossible changes in phases. ResNet was
pretrained on ImageNet, all networks were pretrained with Cholec80.

3.2.5. Team HIKVision (Phase & instrument)

Team HIKVision utilized a ResNet (Qiu et al., 2017) for feature
extraction. The ResNet was first trained for multi-task recognition of
phase and instruments. The fully-connected layers for these two tasks
were then replaced by a LSTM and again two output layers for phase and
instrument recognition. To take phase order and consistency into
consideration, PKI (Jin et al., 2018) was used to post-process the output.
ResNet was pretrained on ImageNet.

3.2.6. Team IGITech (Phase & instrument)

A ResNet (Qiu et al., 2017) was used by team IGITech to extract visual
features from a given laparoscopic frame. A fully-connected layer was
used to 