339 research outputs found

    Neumann-Hoffman Code Evasion and Stripping Method for BeiDou Software-defined Receiver

    Get PDF
    © 2016 The Royal Institute of Navigation. The acquisition and tracking strategies of the BeiDou navigation satellite signals are affected by the modulation of Neumann-Hoffman code (NH code), which increases the complexity of receiver baseband signal processing. Based on the analysis of probability statistics of the NH code, a special sequence of incoming signals is proposed to evade the bit transitions caused by the NH code, and an NH Code Evasion and Stripping method (NCES) based on the NH-pre-modulated code is proposed. The NCES can be applied in both 20-bit NH code and 10-bit NH code. The fine acquisition eliminates the impact of NH code on the traditional tracking loop. These methods were verified with a BeiDou PC-based software-defined receiver using the actual sampled signals. Compared with other acquisition schemes which try to determine or ignore the NH code phase, the NCES needs fewer incoming signals and the actual runtime is greatly reduced without sacrificing much time to search in the secondary code dimension, and the success rate of acquisition is effectively improved. An extension of Fast Fourier Transform (FFT)-based parallel code-phase search acquisition gives the NCES an advantage in engineering applications

    Simple metal oxides as efficient heterogeneous catalysts for epoxidation of alkenes by molecular oxygen

    Get PDF
    Magnetite iron oxide (Fe3O4) has been found to be an efficient heterogeneous catalyst for the epoxidation of alkenes by molecular oxygen in the absence of a sacrificial reductant among various transition metal oxides. The reaction probably proceeds via a radical mechanism

    Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study

    Get PDF
    The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mecha-nisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler mate-rial and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (Tg) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and Tg increased from 93.7 to 106.4 �C. In contrast to m-clay, which at 4 wt%, only improved the G1c by 45 % and Tg by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay

    Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector

    Get PDF
    Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency

    Large-Scale Identification of Mirtrons in Arabidopsis and Rice

    Get PDF
    A new catalog of microRNA (miRNA) species called mirtrons has been discovered in animals recently, which originate from spliced introns of the gene transcripts. However, only one putative mirtron, osa-MIR1429, has been identified in rice (Oryza sativa). We employed a high-throughput sequencing (HTS) data- and structure-based approach to do a genome-wide search for the mirtron candidate in both Arabidopsis (Arabidopsis thaliana) and rice. Five and eighteen candidates were discovered in the two plants respectively. To investigate their biological roles, the targets of these mirtrons were predicted and validated based on degradome sequencing data. The result indicates that the mirtrons could guide target cleavages to exert their regulatory roles post-transcriptionally, which needs further experimental validation

    Effect of staurosporine on the mobility and invasiveness of lung adenocarcinoma A549 cells: an in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer is one of the most malignant tumors, representing a significant threat to human health. Lung cancer patients often exhibit tumor cell invasion and metastasis before diagnosis which often render current treatments ineffective. Here, we investigated the effect of staurosporine, a potent protein kinase C (PKC) inhibitor on the mobility and invasiveness of human lung adenocarcinoma A549 cells.</p> <p>Methods</p> <p>All experiments were conducted using human lung adenocarcinoma A549 cells that were either untreated or treated with 1 nmol/L, 10 nmol/L, or 100 nmol/L staurosporine. Electron microscopy analyses were performed to study ultrastructural differences between untreated A549 cells and A549 cells treated with staurosporine. The effect of staurosporine on the mobility and invasiveness of A549 was tested using Transwell chambers. Western blot analyses were performed to study the effect of staurosporine on the levels of PKC-α, integrin β1, E-cadherin, and LnR. Changes in MMP-9 and uPA levels were identified by fluorescence microscopy.</p> <p>Results</p> <p>We demonstrated that treatment of A549 cells with staurosporine caused alterations in the cell shape and morphology. Untreated cells were primarily short spindle- and triangle-shaped in contrast to staurosporine treated cells which were retracted and round-shaped. The latter showed signs of apoptosis, including vacuole fragmentation, chromatin degeneration, and a decrease in the number of microvilli at the surface of the cells. The A549 cell adhesion, mobility, and invasiveness significantly decreased with higher staurosporine concentrations. E-cadherin, integrin β1, and LnR levels changed by a factor of 1.5, 0.74, and 0.73, respectively compared to untreated cells. In addition, the levels of MMP-9 and uPA decreased in cells treated with staurosporine.</p> <p>Conclusion</p> <p>In summary, this study demonstrates that staurosporine inhibits cell adhesion, mobility, and invasion of A549 cells. The staurosporine-mediated inhibition of PKC-α, induction of E-Cad expression, and decreased integrin β1, LnR, MMP-9, and uPA levels could all possibly contribute to this biological process. These results represent a significant step forward in the ongoing effort to understand the development of lung carcinoma and to design novel strategies to inhibit metastasis of the tumor by targeting the cell-adhesion, mobility and invasion of tumor cells.</p
    corecore