16,801 research outputs found

    Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods

    Get PDF
    A new method to solve the Dirac equation on a 3D lattice is proposed, in which the variational collapse problem is avoided by the inverse Hamiltonian method and the fermion doubling problem is avoided by performing spatial derivatives in momentum space with the help of the discrete Fourier transform, i.e., the spectral method. This method is demonstrated in solving the Dirac equation for a given spherical potential in 3D lattice space. In comparison with the results obtained by the shooting method, the differences in single particle energy are smaller than 10410^{-4}~MeV, and the densities are almost identical, which demonstrates the high accuracy of the present method. The results obtained by applying this method without any modification to solve the Dirac equations for an axial deformed, non-axial deformed, and octupole deformed potential are provided and discussed.Comment: 18 pages, 6 figure

    Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N\approx60

    Full text link
    The shape evolution and shape coexistence phenomena in neutron-rich nuclei at N60N\approx60, including Kr, Sr, Zr, and Mo isotopes, are studied in the covariant density functional theory (DFT) with the new parameter set PC-PK1. Pairing correlations are treated using the BCS approximation with a separable pairing force. Sharp rising in the charge radii of Sr and Zr isotopes at N=60 is observed and shown to be related to the rapid changing in nuclear shapes. The shape evolution is moderate in neighboring Kr and Mo isotopes. Similar as the results of previous Hartree-Fock-Bogogliubov (HFB) calculations with the Gogny force, triaxiality is observed in Mo isotopes and shown to be essential to reproduce quantitatively the corresponding charge radii. In addition, the coexistence of prolate and oblate shapes is found in both 98^{98}Sr and 100^{100}Zr. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi surfaces of neutron and proton respectively. Furthermore, the 5-dimensional (5D) collective Hamiltonian determined by the calculations of the PC-PK1 energy functional is solved for 98^{98}Sr and 100^{100}Zr. The resultant excitation energy of 02+0^+_2 state and E0 transition strength ρ2(E0;02+01+)\rho^2(E0;0^+_2\rightarrow0^+_1) are in rather good agreement with the data. It is found that the lower barrier height separating the two competing minima along the γ\gamma deformation in 100^{100}Zr gives rise to the larger ρ2(E0;02+01+)\rho^2(E0;0^+_2\rightarrow0^+_1) than that in 98^{98}Sr.Comment: 1 table, 11 figures, 23 page

    An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL

    Get PDF
    An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy

    Low-lying states in 30^{30}Mg: a beyond relativistic mean-field investigation

    Full text link
    The recently developed model of three-dimensional angular momentum projection plus generator coordinate method on top of triaxial relativistic mean-field states has been applied to study the low-lying states of 30^{30}Mg. The effects of triaxiality on the low-energy spectra and E0 and E2 transitions are examined.Comment: 6 pages, 3 figures, 1 table, talk presented at the 17th nuclear physics conference "Marie and Pierre Curie" Kazimierz Dolny, 22-26th September 2010, Polan

    Mean-field embedding of the dual fermion approach for correlated electron systems

    Get PDF
    To reduce the rapidly growing computational cost of the dual fermion lattice calculation with increasing system size, we introduce two embedding schemes. One is the real fermion embedding, and the other is the dual fermion embedding. Our numerical tests show that the real fermion and dual fermion embedding approaches converge to essentially the same result. The application on the Anderson disorder and Hubbard models shows that these embedding algorithms converge more quickly with system size as compared to the conventional dual fermion method, for the calculation of both single-particle and two-particle quantities.Comment: 10 pages, 10 figure

    Dual Fermion Method for Disordered Electronic Systems

    Get PDF
    While the coherent potential approximation (CPA) is the prevalent method for the study of disordered electronic systems, it fails to capture non-local correlations and Anderson localization. To incorporate such effects, we extend the dual fermion approach to disordered non-interacting systems using the replica method. Results for single- and two- particle quantities show good agreement with cluster extensions of the CPA; moreover, weak localization is captured. As a natural extension of the CPA, our method presents an alternative to the existing cluster theories. It can be used in various applications, including the study of disordered interacting systems, or for the description of non-local effects in electronic structure calculations.Comment: 5 pages, 4 figure

    Study on the effect of metallurgical waste on the cracking resistance of magnesium oxysulfate cement coatings

    Get PDF
    In this paper, in order to achieve the resource utilization of metallurgical industry waste, the cracking resistance of magnesium oxysulfate cement coatings using granulated blast furnace slag powder and iron tailings powder as fillers was studied, x-ray Diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the hydration products. The results show that an appropriate amount of slag powder and iron tailings powder can make the internal structure of the coating more compact, the surface smooth and effectively reduce the generation of cracks
    corecore