
PHYSICAL REVIEW C 95, 024313 (2017)

Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods
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A new method to solve the Dirac equation on a 3D lattice is proposed, in which the variational collapse problem
is avoided by the inverse Hamiltonian method and the fermion doubling problem is avoided by performing spatial
derivatives in momentum space with the help of the discrete Fourier transform, i.e., the spectral method. This
method is demonstrated in solving the Dirac equation for a given spherical potential in a 3D lattice space. In
comparison with the results obtained by the shooting method, the differences in single-particle energy are smaller
than 10−4 MeV, and the densities are almost identical, which demonstrates the high accuracy of the present
method. The results obtained by applying this method without any modification to solve the Dirac equations for
an axial-deformed, nonaxial-deformed, and octupole-deformed potential are provided and discussed.
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I. INTRODUCTION

The developments of new radioactive ion beam facilities
and new detection techniques have largely extended our
knowledge of nuclear physics from stable nuclei to unstable
nuclei far from the β-stability line, the so-called exotic nuclei.
Novel and striking features have been found in the nuclear
structure of exotic nuclei, such as the halo phenomenon
[1–5] and the disappearance of traditional magic numbers and
occurrence of new ones [6]. To describe the exotic nuclei
with large space distribution, theoretical approaches should be
developed in coordinate space or coordinate-equivalent space.

The density functional theory (DFT) and its covariant
version (CDFT) have been proved to be effective theories for
the description of exotic nuclei [2,3,7–12]. In comparison with
its nonrelativistic counterpart, the CDFT has many attractive
advantages, such as the natural inclusion of nucleon spin free-
dom, new saturation property of nuclear matter [7,13,14], large
spin-orbit splittings in single-particle energies, reproducing the
isotopic shifts of Pb isotopes [15], natural inclusion of time-
odd mean field, and explaining the pseudospin of nucleons and
spin symmetries of antinucleons in nuclei [16–19].

In most CDFT applications, the harmonic oscillator basis
expansion method has been widely used, which is a very
efficient approach and has achieved great success in not only
the description of the single-particle motion in nuclei [19] but
also the self-consistent description of nuclear collective modes,
such as rotations [20–25], vibrations [26–41], and isospin
excitations, by restoring the symmetries and/or considering
quantum fluctuations, see also [7] for details. For exotic
nuclei with large spatial distribution, a large basis space is
needed to get a quick convergence. Due to the incorrect
asymptotic behavior of the harmonic oscillator wave functions,
this method is not appropriate for halo or giant halo nuclei
[8,10,42]. In contrast, the solution of the Dirac equation for
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single nucleons in coordinate space or coordinate-equivalent
space is preferred. For the spherical system, the conventional
shooting method works quite well [9], which, however, is
rather complicated for the deformed system [43]. Therefore the
Dirac Woods-Saxon basis expansion method was developed
[42] and has been widely used to solve the deformed Dirac
equation [4,44], which, however, is highly computationally
time consuming for the heavy system.

The imaginary time method (ITM) [45] is a powerful
approach for self-consistent mean-field calculations in a
three-dimensional (3D) coordinate space. The ITM has been
successfully employed in nonrelativistic self-consistent mean-
field calculations [46,47]. For a long time, there exist doubts
about the access of the ITM to the Dirac equation due to
the Dirac sea, i.e., the relativistic ground state within the
Fermi sea is a saddle point rather than a minimum. This is
the so-called variational collapse problem [48–52]. To avoid
the variational collapse, Zhang et al. [48,50] applied the ITM
to the Schrödinger-equivalent form of the Dirac equation in
the spherical case. The same method is used to solve the
Dirac equation with a nonlocal potential in Refs. [48,49].
Based on the idea of Hill and Krauthauser [53], Hagino and
Tanimura proposed the inverse Hamiltonian method (IHM)
to avoid variational collapse [51]. This method solves the
Dirac equation directly and the Dirac spinor is obtained
simultaneously.

Meanwhile when the IHM method is applied to lattice
space in numerical calculations, another challenge appears,
i.e., fermion doubling problem [52,54] due to the replacement
of the derivative by the finite-difference method [52,54]. This
problem appears also in lattice quantum chromodynamics
(QCD) [55,56], which has been solved by Wilson’s fermion
method [55,56]. In Ref. [52], Tanimura, Hagino, and Liang
followed the same idea and realized the relativistic calcula-
tions on 3D lattice by introducing high-order Wilson term.
However, the high-order Wilson term modified the original
Dirac Hamiltonian and the single-particle energies and wave
functions need be corrected. Although the corrections can be
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done with the perturbation theory, numerically it is much more
involved. Another problem is that the high-order Wilson term
introduces artificial symmetry breaking to the system [52].

In this paper, we propose a new recipe for the imaginary
time method to solve the Dirac equation in 3D lattice space,
where the variational collapse problem is avoided by the IHM,
and the fermion doubling problem is avoided by performing
the spatial derivatives of the Dirac equation in momentum
space with the help of discrete Fourier transform, the so-called
spectral method [57].

This method is demonstrated by solving the Dirac equation
for a given spherical potential in 3D lattice space and
comparing with the results obtained by the shooting method.
By extending this method to solve the Dirac equations for an
axial-deformed, nonaxial-deformed, and octupole-deformed
potential, the corresponding single-particle energy levels are
obtained. The corresponding quantum numbers of these energy
levels are obtained respectively by projection.

The paper is organized as follows, the variational collapse
and fermion doubling problems will be briefly introduced in
Sec. II together with the inversion Hamiltonian method and
the spectral method. In Sec. III the parameters for Woods-
Saxon type potentials and the numerical details are presented.
Section IV is devoted to results and discussions. Summary and
perspectives are given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Variational collapse and inverse Hamiltonian method

1. Imaginary time method

The ITM is an iterative method for mean-field problem.
The idea of ITM is to replace time with an imaginary number,
and the evolution of the wave function reads [45],

e−iĥt |ψ0〉 t→−iτ−−−→ e−ĥτ |ψ0〉, (1)

where |ψ0〉 is an initial wave function and ĥ is the Hamiltonian.
With the eigenstates {φk} of the Hamiltonian ĥ correspond-

ing to the eigenenergies {εk}, the evolution of the wave function
|ψ(τ )〉 = e−ĥτ |ψ0〉 can be written as

|ψ(τ )〉 = e−ĥτ |ψ0〉 =
∑

k

e−εkτ |φk〉〈φk|ψ0〉, (2)

where ε1 � ε2 � · · · . For τ → ∞, |ψ(τ )〉 will approach the
ground-state wave function of ĥ as long as 〈φ1|ψ0〉 �= 0.

In practice, the imaginary time τ is discrete with the interval
�τ , i.e., τ = N�τ . The wave function at τ = (n + 1)�τ
is obtained from the wave function at τ = n�τ by expand-
ing the exponential evolution operator e−�τĥ to the linear
order of �τ ,

|ψ (n+1)〉 ∝ (1 − �τĥ)|ψ (n)〉. (3)

Since this evolution is not unitary, the wave function should
be normalized at every step.

To find excited states, one can start with a set of initial
wave functions and orthonormalize them during the evolution
by the Gram-Schmidt method. This method has been success-
fully employed in the 3D coordinate-space calculations for
nonrelativistic systems [46,47].

2. Variational collapse

For the static Dirac equation,

{−iα · ∇ + V (r) + β[m + S(r)] − m}ψ(r) = εψ(r), (4)

with α and β the Dirac matrix, V (r) the vector potential, S(r)
the scalar potential, and ψ(r) the Dirac spinor, its eigenenergy
spectrum extends from the continuum in the Dirac sea to the
continuum in the Fermi sea. Because of the existence of the
Dirac sea, the evolution in Eq. (2) inevitably dives into the
Dirac sea (negative energy states) as τ → ∞, which is the
so-called variational collapse problem [50].

3. Inverse Hamiltonian method

To avoid the variational collapse, Hagino and Tanimura
proposed the inverse Hamiltonian method [51] to find the wave
function of the Dirac Hamiltonian ĥ by

lim
τ→∞ eτ/(ĥ−W )|ψ0〉, (5)

where W is an auxiliary parameter introduced to locate the
interested eigenstate.

With a given W , the spectrum of ĥ can be labeled as

· · · � ε−2 � ε−1 < W < ε1 � ε2 � · · · , (6)

where · · · ,ε−2,ε−1 and ε1,ε2, · · · are the eigenenergies of the
Dirac Hamiltonian ĥ. Accordingly, the spectrum of 1/(ĥ − W )
reads

1

ε−1 − W
� 1

ε−2 − W
� · · · � 1

ε2 − W
� 1

ε1 − W
. (7)

The evolution of the wave function in Eq. (5) will lead to the
eigen wave function |φ1〉 corresponding to the eigenvalue ε1,

lim
τ→∞ eτ/(ĥ−W )|ψ0〉

= lim
τ→∞

∑
k

eτ/(εk−W )|φk〉〈φk|ψ0〉 ∝ |φ1〉, (8)

as long as 〈φ1|ψ0〉 �= 0.
In practice, the imaginary time evolution in Eq. (5) is

performed iteratively,

|ψ (n+1)〉 ∝
(

1 + �τ

ĥ − W

)
|ψ (n)〉. (9)

The wave function also should be normalized at every step.
The inverse of the Hamiltonian in Eq. (9), �τ

ĥ−W
|ψ (n)〉, can be

solved iteratively by the conjugate residual method [58].
To find excited states, with a set of initial wave functions,

there are two options for choosing W . One can take a fixed
W , then evolve the set of wave functions and orthonormalize
them during the evolution by the Gram-Schmidt method.
Alternatively, one can take the set of Wi for each eigenstate i
to evolve the whole set of wave functions. The details can be
found in Sec. III, where an efficient method for choosing Wi

is suggested to achieve a fast convergence.
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B. Fermion doubling problem and spectra method

1. Fermion doubling problem

For a Dirac equation on 3D lattice, there exists a so-called
fermion doubling problem due to the replacement of the first
derivatives in the Dirac equation (4) by the finite-difference
method [52,54]. Taking the one-dimensional Dirac equation
as an example,

(−iα∂x + βm)ψ(x) = εψ(x), (10)

its solution has the form

ψ(x) = ψ̃(k) exp(ikx). (11)

If one approximates the derivative ∂x in Eq. (10) with a three-
point differential formula with the mesh size d, the Dirac
equation (10) becomes[

1

d
α sin(kd) + βm

]
ψ̃(k) = εψ̃(k). (12)

The dispersion relation obtained from Eq. (12) reads

ε2 = 1

d2
sin2(kd) + m2, (13)

which differs from the exact one,

ε2 = k2 + m2. (14)

For the dispersion relation (13) obtained with the three-point
differential formula, there are two momenta corresponding
to one energy in the momentum interval [0,d/π ]. The lower
momentum corresponds to the physical solution, while the
higher momentum corresponds to a spurious solution. As
illustrated in Ref. [52], this problem persists even with the more
accurate finite-differential formula. Similar spurious solution
problems in radial Dirac equations are also demonstrated in
Ref. [59].

2. Spectral method

To avoid the fermion doubling problem, the derivative in
Eq. (10) can be performed in momentum space,

[αk + βm]ψ̃(k) = εψ̃(k), (15)

which yields the exact dispersion relation; i.e., the fermion
doubling problem is avoided naturally. This is the so-called
spectral method, i.e., to perform spatial derivatives in momen-
tum space. In the following, this method is illustrated in a 1D
case and it is straightforward to generalize this method to the
3D case.

We assume that there are even nx discrete grid points xν in
coordinate space distributing symmetric with the origin point,

xν =
(

−nx − 1

2
+ ν − 1

)
dx, ν = 1, . . . ,nx, (16)

same number of grid points kμ in momentum space,

kμ =
{

(μ − 1)dk, μ = 1, . . . ,nx/2,
(μ − nx − 1)dk, μ = nx/2 + 1, . . . ,nx,

(17)

and the steps in coordinate space dx and in momentum space
dk are related by

dk = 2π

nx dx
. (18)

The function in coordinate space f (xν) and the function in
momentum space f̃ (kμ) are connected by the discrete Fourier
transform

f̃ (kμ) =
nx∑

ν=1

exp(−ikμxν)f (xν), (19a)

f (xν) = 1

nx

nx∑
μ=1

exp(ikμxν)f̃ (kμ). (19b)

From Eq. (19b), the mth order derivative of f (xν) can be found
as

f (m)(xν) = 1

nx

nx∑
μ=1

exp(ikμxν)(ikμ)mf̃ (kμ)

= 1

nx

nx∑
μ=1

exp(ikμxν)f̃ (m)(kμ). (20)

Here f̃ (m)(kμ) corresponds to the Fourier transform of the
mth-order derivative of f (xν),

f̃ (m)(kμ) = (ikμ)mf̃ (kμ). (21)

In summary, the procedures to perform derivatives in
coordinate space are as follows: (1) calculate f̃ (kμ) from
f (xν) by the discrete Fourier transform in Eq. (19a); (2)
calculate f̃ (m)(kμ) by Eq. (21); (3) calculate the mth-order
derivative f̃ (m)(xν) from f̃ (m)(kμ) by the inverse discrete
Fourier transform as in Eq. (19b).

The spectral method has the advantage of performing the
spatial derivatives with a good accuracy. The information of
all grids is used in calculating the spatial derivative of any
grid. Different from the finite-differential method, all grids are
treated on the same footing and the grids near the boundaries
do not need special numerical techniques.

III. NUMERICAL DETAILS

In the following, we will solve the Dirac equation on
3D lattice in which the variational collapse problem is
avoided by the inverse Hamiltonian method, and the fermion
doubling problem is avoided by performing spatial derivatives
in momentum space with the help of the discrete Fourier
transform, i.e., the spectral method.

The vector potential V (r) and the scalar potential S(r) in
Eq. (4) are Woods-Saxon type potentials satisfying

V (r) + S(r) = V0

1 + exp{[r − R0F (�)]/a} ,

V (r) − S(r) = −λV0

1 + exp{[r − RlsF (�)]/als} ,
(22)
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TABLE I. Parameters in the Woods-Saxon type potential Eq. (22)
adopted in the present 3D lattice calculations.

V0 (MeV) R0 (fm) a (fm) λ Rls (fm) als (fm)

−65.796 4.482 0.615 11.118 4.159 0.648

where F (�) is a function of � = (θ,ϕ) with potential
deformation parameters β20, β22, and β30,

F (�) = 1 + β20Y20(�) + β22[Y22(�) + Y2(−2)(�)]

+β30Y30(�). (23)

The deformation parameters β20 and β22 in Eq. (23) are related
to Hill-Wheeler coordinates β and γ [60,61] by

β20 = β cos γ, β22 = 1√
2
β sin γ. (24)

The adopted Woods-Saxon potential parameters in Eq. (22)
are listed in Table I, which correspond to the neutron potential
in 48Ca [62].

In the calculations, the box sizes L = 23 fm and step sizes
d = 1 fm are chosen along x, y, and z axes if not otherwise
specified. The imaginary time-step size �T is taken to be
100 MeV.

For the ith level, the upper component of the initial wave
function is generated from a nonrelativistic harmonic oscillator
state and the corresponding lower component is taken the same
as the upper one. The energy shift Wi is taken as

Wi = εi − �Wi, (25)

where εi is the expectation value of the Dirac Hamiltonian for
the ith level. The choice of �Wi is as follows: �W1 = 6 MeV
and for i > 1,

�Wi =
{
εi − εi−1, εi − εi−1 > �W1,
�Wi−1, εi − εi−1 � �W1.

(26)

The convergence in the evolution of the wave functions for
our interested states is determined by

√
〈ĥ2〉i − 〈ĥ〉2

i smaller
than the required accuracy δi = 10−4 MeV if not otherwise
specified.

To speed up the convergence, the Dirac Hamiltonian is
diagonalized within the space of the evolution wave functions
every 10 iterations, and the eigenfunctions thus obtained are
taken as initial wave functions for future iteration. A similar
technique is also used in Ref. [47].

IV. RESULTS AND DISCUSSION

A. Spherical potential

In this section, the Dirac equation with a given potential
is solved in 3D lattice space by the new method (denoted as
3D lattice). First we examine the convergence feature of the
present 3D lattice calculation for a spherical potential in Eq.
(22). The results will be compared with those obtained by the
shooting method (denoted as shooting) [9] with a box size
R = 20 fm and a step size dr = 0.01 fm.

FIG. 1. Evolution of single-particle energies in the spherical
Woods-Saxon potential in Eq. (22) as a function of iteration times.
Convergence is achieved after the 39th iteration where the energy
dispersions of all bound single-particle levels are smaller than
10−4 MeV. As a comparison, the results obtained by the shooting
method are also given.

With the potential parameters in Table I, the evolution of
single-particle energies as a function of iteration times is shown
in Fig. 1. There are in total of 40 bound single-particle states
in the 3D lattice calculation and some of them are degenerate
in energy due to the spherical symmetry. For clarity, only
one energy level of the degenerate ones is shown to illustrate
the evolution of single-particle energies. The single-particle
energies obtained by the shooting method are also shown for
comparison. It can be seen that the deeper levels converge more
quickly. After the 39th iteration, the accuracy of energy for all
bound levels is smaller than 10−4 MeV. A distinct feature is
observed at the 10th iteration where the convergence of 1p1/2,
1d3/2, and 2s1/2 states is speeded up due to the diagonalization
of the Hamiltonian within the space of the evolution wave
functions. In fact, it will cost tens of thousands of iteration steps
to reach the convergence tolerance without this diagonalization
procedure.

In Fig. 2, the absolute deviations of single-particle energies
between the 3D lattice calculation and the shooting method
are given as a function of single-particle energy for different
step sizes d and box sizes L. In Fig. 2(a), for d = 1.0 fm
and L = 23.0 fm, the absolute deviations of single-particle
energies are smaller than 10−3 MeV, except the weakly bound
states 1f5/2, 2p3/2, and 2p1/2. In Fig. 2(b), for d = 0.8 fm and
L = 23.2 fm, the absolute deviations of single-particle states
are less than 10−4 MeV, except 2p3/2 and 2p1/2. And in Fig.
2(c), for d = 0.8 fm and L = 31.2 fm, all absolute deviations
including 2p3/2 and 2p1/2 are smaller than 10−4 MeV.

These results indicate that smaller step size can definitely
improve the accuracy but not for the weakly bound states
with low orbital angular momentum. By choosing suitable
step and box sizes, accurate descriptions for all the bound
states including the weakly bound states 2p3/2 and 2p1/2 can
be achieved in the 3D lattice calculations.

It is interesting to investigate the spatial distributions of
states and examine their agreements with the results obtained
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FIG. 2. Absolute deviations of single-particle energies between
the 3D lattice calculation and the shooting method as a function of
single-particle energy for (a) step sizes d = 1.0 fm and box sizes
L = 23.0 fm, (b) d = 0.8 fm and L = 23.2 fm, and (c) d = 0.8 fm
and L = 31.2 fm. The spherical quantum numbers are listed in (b).

by the shooting method. In Fig. 3, as examples, the distribu-
tions of the states corresponding to 1d5/2 in z = 0 plane are
illustrated. The states corresponding to 1d5/2 are six degenerate
single-particle states in the 3D lattice calculations. Their
spatial distributions are respectively shown in Figs. 3(a)–3(f),
and Fig. 3(g) exhibits their average in the z = 0 plane. As
there is no symmetry restriction in the 3D lattice calculations,
the six states are randomly oriented in space. However, their
average spatial distribution does show the spherical symmetry
as shown in Fig. 3(g), which is consistent with the given
spherical potential.

To compare with the radial density distribution obtained by
the shooting method, one can average the density distributions
in the 3D lattice calculation,

ρnlj (r) = 1

2j + 1

∑
i∈{nlj}

ψ
†
i (r)ψi(r). (27)

In Fig. 4, the radial density distributions for 1s1/3, 1d5/2, and
2s1/2 in the 3D lattice calculation (open circles) in comparison
with the shooting method (solid line) are given, in which a
factor 4πr2 has been multiplied in order to amplify the radial

FIG. 3. Spatial distributions of the states corresponding to 1d5/2

in z = 0 plane in the 3D lattice calculation. Figures (a)–(f) are the
density distributions of the states in 1d5/2, and (g) is their average
spatial distributions.

density distribution at large distance. It can be clearly seen
that the two distributions are in perfect agreement with each
other. The data points in the 3D lattice calculation are denser
for large r because the grid points used are uniform in the 3D
lattice space.

FIG. 4. Radial density distributions for 1s1/3, 1d5/2, and 2s1/2

in the 3D lattice calculation (open circles) in comparison with the
shooting method (solid line). The radial density distribution in the
3D lattice calculation is extracted by Eq. (27).
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FIG. 5. Single-particle levels in the deformed Woods-Saxon
potential as functions of the deformation parameters β, γ , and
β30. The red and blue lines represent the levels with positive
and negative parity, respectively. The shapes shown in the top
panel correspond to the deformed parameters (β,γ,β30) = (0,0◦,0),
(0.3,0◦,0), (0.3,30◦,0), (0.3,30◦,0.7), respectively.

B. Deformed potentials

For the Dirac equations with the deformed potentials in
Eq. (22), the single-particle energies as functions of deforma-
tion parameters β, γ , and β30 are given in Fig. 5, which respec-
tively correspond to axial, nonaxial, and reflection-asymmetric
deformed potentials. In Fig. 5(a), the potentials have both the
space reflection symmetry and axial symmetry with γ = 0,
β30 = 0, and β from 0 to 0.3. In Fig. 5(b), the potentials
break the axial symmetry while keeping the space reflection
symmetry with β = 0.3, β30 = 0, and γ from 0◦ to 30◦. In
Fig. 5(c), the potentials break both the space reflection symme-
try and axial symmetry with β = 0.3, γ = 30◦, and β30 from
0 to 1.0.

Although there is no symmetry restriction in the 3D lattice
calculations, we can search for good quantum numbers from
the expectations of physical operators. For spherical cases,
total angular momentum j and orbital angular momentum l

can be calculated by the expectation of ĵ
2

and l̂
2

with the
upper components of the wave functions. For axial cases,
the z component of the total angular momentum |mz| can
be calculated by the expectation of ĵ 2

z . For the space reflection
symmetry case, the parity can be calculated by the expectation
of the parity operator P̂ = βP̂r , where β is the Dirac matrix
and P̂rF (r) = F (−r).

From Fig. 5, it can be seen that the levels in the spherical
case are split into (2j + 1)/2 levels with the potential changing
from spherical to deformed. However, the Kramers degeneracy
remains as there is no time odd potential. For the axial case,
the levels with lower (higher) |mz| values shift downward
(upward) consistent with the Nilsson model. Comparing Figs.
5(a) and 5(b), it can be seen that the spectrum changes more
modestly with γ than with β. In Fig. 5(c), all levels trend to
shift downward with β30, which shows its instability in fission.

To examine the compositions and their evolution of the
single-particle level with deformation parameters β, γ , and

FIG. 6. Compositions of levels A–C in Fig. 5 as functions of
the deformation parameters β, γ , and β30. The quantum numbers are
given for each composition. The total probabilities are shown as black
dashed lines.

β30, levels A, B, and C in Fig. 5 are chosen as examples.
The results are illustrated in Fig. 6. In the left panels,
the compositions of each level are obtained by overlapping
the wave functions with the wave functions obtained with
(β,γ,β30) = (0,0◦,0). In the middle panels, the compositions
of each level are obtained by overlapping the wave functions
with the wave functions obtained with (β,γ,β30) = (0.3,0◦,0).
In the right panels, the parity compositions of each level are
obtained by the expectation of the parity operator.

In the left panels, there is only small mixing with other orbits
for level A compared to levels B and C. It can be understood
as follows. This is due to the special character of level A with
|mz| = 7/2 and parity = −. The possible mixing is from the
1h11/2 orbit which lies high in energy. Similar conclusions can
be drawn for the levels |mz| = 3/2 originating from 1p3/2 and
|mz| = 5/2 originating from 1d5/2.

In the middle panels, for level A, there is a dramatic
change for |mz| = 7/2 and |mz| = 1/2 components when γ
approaches 30◦. This is due to the interaction between level
A and the level originating from 1f5/2 and |mz| = 1/2 at
γ = 30◦, as shown in energy levels in Fig. 5(b).

In the right panels, for the octupole-deformed case, the
parity composition of levels B and C changes rigorously due
to a complicated interaction between levels. For level A, the
main composition is negative parity as it mainly interacts with
negative-parity-dominated levels. All these can be understood
from Fig. 5(c).

V. SUMMARY AND PERSPECTIVES

In summary, a new method to solve the Dirac equation in 3D
lattice space is proposed with the inverse Hamiltonian method
to avoid variational collapse and the spectral method to avoid
the fermion doubling problem. This method is demonstrated in
solving the Dirac equation for a given spherical potential in 3D
lattice space. In comparison with the results obtained by the
shooting method, the differences in single-particle energies
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are smaller than 10−4 MeV, and the densities are almost
identical, which demonstrates the high accuracy of the present
method. Applying this method to Dirac equations with an
axial-deformed, nonaxial-deformed, and octupole-deformed
potential without further modification, the single-particle
levels as functions of the deformation parameters β, γ , and
β30 are shown together with their compositions.

Efforts in implanting this method on the CDFT to investi-
gate nuclei without any geometric restriction are in progress.
Possible applications include solving the Dirac equation
in an external electric potential (deformation constrained
calculation) to investigate nuclei with an arbitrary shape, and
in an external magnetic potential (Coriolis term) to investigate
rotating nuclei with an arbitrary shape and an arbitrary

rotating axis. Moreover, the 3D time-dependent CDFT is also
envisioned to be developed to investigate the relativistic effects
in heavy-ion collisions and other nuclear reactions.
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