41 research outputs found

    LogPrompt: Prompt Engineering Towards Zero-Shot and Interpretable Log Analysis

    Full text link
    Automated log analysis is crucial in modern software-intensive systems for ensuring reliability and resilience throughout software maintenance and engineering life cycles. Existing methods perform tasks such as log parsing and log anomaly detection by providing a single prediction value without interpretation. However, given the increasing volume of system events, the limited interpretability of analysis results hinders analysts' trust and their ability to take appropriate actions. Moreover, these methods require substantial in-domain training data, and their performance declines sharply (by up to 62.5%) in online scenarios involving unseen logs from new domains, a common occurrence due to rapid software updates. In this paper, we propose LogPrompt, a novel zero-shot and interpretable log analysis approach. LogPrompt employs large language models (LLMs) to perform zero-shot log analysis tasks via a suite of advanced prompt strategies tailored for log tasks, which enhances LLMs' performance by up to 107.5% compared with simple prompts. Experiments on nine publicly available evaluation datasets across two tasks demonstrate that LogPrompt, despite using no training data, outperforms existing approaches trained on thousands of logs by up to around 50%. We also conduct a human evaluation of LogPrompt's interpretability, with six practitioners possessing over 10 years of experience, who highly rated the generated content in terms of usefulness and readability (averagely 4.42/5). LogPrompt also exhibits remarkable compatibility with open-source and smaller-scale LLMs, making it flexible for practical deployment

    High‑Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis

    Get PDF
    AbstractMetal‐organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X‐ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high‐throughput approach for structural analysis of MOF nano‐ and sub‐microcrystals by three‐dimensional electron diffraction (3DED). A new zeolitic‐imidazolate framework (ZIF), denoted ZIF‐EC1, was first discovered in a trace amount during the study of a known ZIF‐CO3‐1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF‐EC1 has a dense 3D framework structure, which is built by linking mono‐ and bi‐nuclear Zn clusters and 2‐methylimidazolates (mIm−). With a composition of Zn3(mIm)5(OH), ZIF‐EC1 exhibits high N and Zn densities. We show that the N‐doped carbon material derived from ZIF‐EC1 is a promising electrocatalyst for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications

    Providing HIV-related services in China for men who have sex with men.

    Get PDF
    PROBLEM: In China, human immunodeficiency virus (HIV) care provided by community-based organizations and the public sector are not well integrated. APPROACH: A community-based organization and experts from the Guangzhou Center for Disease Control and Prevention developed internet-based services for men who have sex with men, in Guangzhou, China. The internet services were linked to clinical services offering HIV testing and care. LOCAL SETTING: The expanding HIV epidemic among men who have sex with men is a public health problem in China. HIV control and prevention measures are implemented primarily through the public system. Only a limited number of community organizations are involved in providing HIV services. RELEVANT CHANGES: The programme integrated community and public sector HIV services including health education, online HIV risk assessment, on-site HIV counselling and testing, partner notification, psychosocial care and support, counting of CD4+ T-lymphocytes and treatment guidance. LESSONS LEARNT: The internet can facilitate HIV prevention among a subset of men who have sex with men by enhancing awareness, service uptake, retention in care and adherence to treatment. Collaboration between the public sector and the community group promoted acceptance by the target population. Task sharing by community groups can increase access of this high-risk group to available HIV-related services

    Clay mineral transformation mechanism modelling of shale reservoir in Da’anzhai Member, Sichuan Basin, Southern China

    Get PDF
    Shale reservoirs often undergo intense clay mineral transformation, which plays a crucial role in the formation and evolution of pores. The reservoir lithofacies types of Da’anzhai Member in the Sichuan Basin are complex, the heterogeneity is strong, and the transformation mechanism of clay minerals is unclear, limiting the understanding of reservoir diagenesis and reservoir formation mechanism. In this study, we selected the typical shale reservoir in the Da’anzhai Member of the eastern Sichuan Basin and innovatively introduced the multiphase fluid-chemical-thermal multi-field coupled numerical simulation technique to focus on the dissolution, precipitation and transformation laws of diagenetic minerals in the shale reservoir. We calculated the transformation of diagenetic minerals and their physical response under different temperatures, pressure and fluid conditions and identified the main controlling factors of mineral transformation in shale reservoirs in the study area. The results show that the transformation of smectite to illite in the Da’anzhai Member is a complex physicochemical process influenced by various factors such as temperature, pressure, fluid, and lithology. The increase in temperature can promote illitization until the critical temperature of 110°C–115°C, below which the conversion rate of smectite to illite increases as the temperature increases. However, when it is higher than the critical temperature, the degree of illitization decreases. In specific K-rich fluids, organic acids significantly affect the conversion of clay minerals in the Da’anzhai Member of the formation. The acidic fluid promotes the dissolution of minerals such as K-feldspar and releases K+, thus provides the material basis for illitization. The research results provide theoretical support for the diagenetic and formation mechanism of the shale reservoir in the Da’anzhai Member of the Sichuan Basin and even for the efficient exploration and development of shale gas

    The Dynamic Analysis of Agro-ecological Economic System on the Basis of Emergy : A Case Study of Wu'an City in Hebei Province

    No full text
    Using the method of emergy analysis, we analyze the input and output of agro-ecological economic system, and select five indicators (net emergy yield ratio, emergy investment ratio, environmental loading ratio, emergy sustainability index, and dominance of emergy yield system) for assessment. The results show that the emergy input-output in Wu'an City is in general on the rise; the emergy investment ratio rises constantly, but the net emergy yield ratio decreases, and the comparative advantage in the prices of agricultural products is gradually lost. At the same time, with increase in the non-renewable industrial support emergy, the environmental pressures are also mounting. In the future agricultural development, it is necessary to pay more attention to the coordination between agricultural development and ecological environment, achieving sustainable development of agriculture

    Storage Management Strategy in Mobile Phones for Photo Crowdsensing

    Get PDF
    In mobile crowdsensing, some users jointly finish a sensing task through the sensors equipped in their intelligent terminals. In particular, the photo crowdsensing based on Mobile Edge Computing (MEC) collects pictures for some specific targets or events and uploads them to nearby edge servers, which leads to richer data content and more efficient data storage compared with the common mobile crowdsensing; hence, it has attracted an important amount of attention recently. However, the mobile users prefer uploading the photos through Wifi APs (PoIs) rather than cellular networks. Therefore, photos stored in mobile phones are exchanged among users, in order to quickly upload them to the PoIs, which are actually the edge services. In this paper, we propose a utility-based Storage Management strategy in mobile phones for Photo Crowdsensing (SMPC), which makes a sending/deleting decision on a user’s device for either maximizing photo delivery ratio (SMPC-R) or minimizing average delay (SMPC-D). The decision is made according to the photo’s utility, which is calculated by measuring the impact of reproducing or deleting a photo on the above performance goals. We have done simulations based on the random-waypoint model and three real traces: roma/taxi, epfl, and geolife. The results show that, compared with other storage management strategies, SMPC-R gets the highest delivery ratio and SMPC-D achieves the lowest average delay

    Storage Management Strategy in Mobile Phones for Photo Crowdsensing

    No full text
    In mobile crowdsensing, some users jointly finish a sensing task through the sensors equipped in their intelligent terminals. In particular, the photo crowdsensing based on Mobile Edge Computing (MEC) collects pictures for some specific targets or events and uploads them to nearby edge servers, which leads to richer data content and more efficient data storage compared with the common mobile crowdsensing; hence, it has attracted an important amount of attention recently. However, the mobile users prefer uploading the photos through Wifi APs (PoIs) rather than cellular networks. Therefore, photos stored in mobile phones are exchanged among users, in order to quickly upload them to the PoIs, which are actually the edge services. In this paper, we propose a utility-based Storage Management strategy in mobile phones for Photo Crowdsensing (SMPC), which makes a sending/deleting decision on a user’s device for either maximizing photo delivery ratio (SMPC-R) or minimizing average delay (SMPC-D). The decision is made according to the photo’s utility, which is calculated by measuring the impact of reproducing or deleting a photo on the above performance goals. We have done simulations based on the random-waypoint model and three real traces: roma/taxi, epfl, and geolife. The results show that, compared with other storage management strategies, SMPC-R gets the highest delivery ratio and SMPC-D achieves the lowest average delay

    C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in Pseudomonas aeruginosa and its structure prediction and analysis.

    No full text
    This study aimed to screen DNA aptamers against the signal molecule C4-HSL of the rhl system for the inhibition of biofilm formation of Pseudomonas aeruginosa using an improved systematic evolution of ligand by exponential enrichment (SELEX) method based on a structure-switching fluorescent activating bead. The aptamers against the C4-HSL with a high affinity and specifity were successfully obtained and evaluated in real-time by this method. Results of biofilm inhibition experiments in vitro showed that the biofilm formation of P. aeruginosa was efficiently reduced to about 1/3 by the aptamers compared with that of the groups without the aptamers. Independent secondary structure simulation and computer-aided tertiary structure prediction (3dRNA) showed that the aptamers contained a highly conserved Y-shaped structural unit. Therefore, this study benefits the search for new methods for the detection and treatment of P. aeruginosa biofilm formation
    corecore