Graph computing has become increasingly crucial in processing large-scale
graph data, with numerous systems developed for this purpose. Two years ago, we
introduced GraphScope as a system addressing a wide array of graph computing
needs, including graph traversal, analytics, and learning in one system. Since
its inception, GraphScope has achieved significant technological advancements
and gained widespread adoption across various industries. However, one key
lesson from this journey has been understanding the limitations of a
"one-size-fits-all" approach, especially when dealing with the diversity of
programming interfaces, applications, and data storage formats in graph
computing. In response to these challenges, we present GraphScope Flex, the
next iteration of GraphScope. GraphScope Flex is designed to be both
resource-efficient and cost-effective, while also providing flexibility and
user-friendliness through its LEGO-like modularity. This paper explores the
architectural innovations and fundamental design principles of GraphScope Flex,
all of which are direct outcomes of the lessons learned during our ongoing
development process. We validate the adaptability and efficiency of GraphScope
Flex with extensive evaluations on synthetic and real-world datasets. The
results show that GraphScope Flex achieves 2.4X throughput and up to 55.7X
speedup over other systems on the LDBC Social Network and Graphalytics
benchmarks, respectively. Furthermore, GraphScope Flex accomplishes up to a
2,400X performance gain in real-world applications, demonstrating its
proficiency across a wide range of graph computing scenarios with increased
effectiveness