1,366 research outputs found
Search for correlations between solar flares and decay rate of radioactive nuclei
The deacay rate of three different radioactive sources 40K, 137Cs and natTh
has been measured with NaI and Ge detectors. Data have been analyzed to search
for possible variations in coincidence with the two strongest solar flares of
the years 2011 and 2012. No significant deviations from standard expectation
have been observed, with a few 10-4 sensitivity. As a consequence, we could not
find any effect like that recently reported by Jenkins and Fischbach: a few per
mil decrease in the decay rate of 54Mn during solar flares in December 2006.Comment: 5 pages, 3 figure
Precise measurement of the 222Rn half-life: a probe to monitor the stability of radioactivity
We give the results of a study on the 222Rn decay we performed in the Gran
Sasso Laboratory (LNGS) by detecting the gamma rays from the radon progeny. The
motivation was to monitor the stability of radioactivity measuring several
times per year the half-life of a short lifetime (days) source instead of
measuring over a long period the activity of a long lifetime (tens or hundreds
of years) source. In particular, we give a possible reason of the large
periodical fluctuations in the count rate of the gamma rays due to radon inside
a closed canister which has been described in literature and which has been
attributed to a possible influence of a component in the solar irradiation
affecting the nuclear decay rates. We then provide the result of four half-life
measurements we performed underground at LNGS in the period from May 2014 to
January 2015 with radon diffused into olive oil. Briefly, we did not measure
any change of the 222Rn half-life with a 8*10^-5 precision. Finally, we provide
the most precise value for the 222Rn half-life: 3.82146(16){stat}(4){syst}
days.Comment: Accepted for publication in Physics Letters B, 6 pages, 6 figure
Search for time modulations in the decay rate of 40K and 232Th
Time modulations at per mil level have been reported to take place in the
decay constant of about 15 nuclei with period of one year (most cases) but also
of about one month or one day. In this paper we give the results of the
activity measurement of a 40K source and a 232Th one. The two experiments have
been done at the Gran Sasso Laboratory during a period of about 500 days, above
ground (40K) and underground (232Th) with a target sensitivity of a few parts
over 10^5. We also give the results of the activity measurement at the time of
the X-class solar flares which took place in May 2013. Briefly, our
measurements do not show any evidence of unexpected time dependence in the
decay rate of 40K and 232Th.Comment: version accepted for publication (Astroparticle Physics
efficiency and safety of human reproductive cell tissue vitrification
Vitrification is a cryopreservation technique increasingly applied in clinical practice for cells and tissue. This review article focuses mainly on the efficiency of vitrification of human reproductive cells and tissue, by analysing the clinical results reported in the literature. The second aspect discussed is safety of vitrification procedure. Different procedures and different types of carriers can be used, and in some cases vitrification requires a direct contact between cell/tissue/carrier and liquid nitrogen; this causes concern regarding the safety of this cryopreservation technique. Although the risk of contamination during cryopreservation remains negligible, this article explains how to overcome the hypothetical risk of contamination when using different types of vitrification carriers, in order to satisfy all existing directives
Search for time modulations in the decay constant of 40K and 226Ra at the underground Gran Sasso Laboratory
Time modulations at per mil level have been reported to take place in the
decay constant of several nuclei with period of one year (most cases) but also
of about one month or one day. On the other hand, experiments with similar or
better sensitivity have been unable to detect any modulation. In this letter we
give the results of the activity study of two different sources: 40K and 226Ra.
The two gamma spectrometry experiments have been performed underground at the
Gran Sasso Laboratory, this way suppressing the time dependent cosmic ray
background. Briefly, our measurements reached the sensitivity of 3.4 and 3.5
parts over 10^6 for 40K and 226Ra, respectively (1 sigma) and they do not show
any statistically significant evidence of time dependence in the decay
constant. We also give the results of the activity measurement at the time of
the two strong X-class solar flares which took place in September 2017. Our
data do not show any unexpected time dependence in the decay rate of 40K in
correspondence with the two flares. To the best of our knowledge, these are the
most precise and accurate results on the stability of the decay constant as
function of time.Comment: Accepted for publication in Physics Letters B, 6 pages, 8 figures.
arXiv admin note: text overlap with arXiv:1311.704
A new study of Mg(,n)Si angular distributions at = 3 - 5 MeV
The observation of Al gives us the proof of active nucleosynthesis in
the Milky Way. However the identification of the main producers of Al is
still a matter of debate. Many sites have been proposed, but our poor knowledge
of the nuclear processes involved introduces high uncertainties. In particular,
the limited accuracy on the Mg(,n)Si reaction cross
section has been identified as the main source of nuclear uncertainty in the
production of Al in C/Ne explosive burning in massive stars, which has
been suggested to be the main source of Al in the Galaxy. We studied
this reaction through neutron spectroscopy at the CN Van de Graaff accelerator
of the Legnaro National Laboratories. Thanks to this technique we are able to
discriminate the (,n) events from possible contamination arising from
parasitic reactions. In particular, we measured the neutron angular
distributions at 5 different beam energies (between 3 and 5 MeV) in the
\ang{17.5}-\ang{106} laboratory system angular range. The presented results
disagree with the assumptions introduced in the analysis of a previous
experiment.Comment: 9 pages, 9 figures - accepted by EPJ
49Cr: Towards full spectroscopy up to 4 MeV
The nucleus 49Cr has been studied analysing gamma-gamma coincidences in the
reaction 46Ti(alpha,n)49Cr at the bombarding energy of 12 MeV. The level scheme
has been greatly extended at low excitation energy and several new lifetimes
have been determined by means of the Doppler Shift Attenuation Method.
Shell model calculations in the full pf configuration space reproduce well
negative-parity levels. Satisfactory agreement is obtained for positive parity
levels by extending the configuration space to include a nucleon-hole either in
the 1d3/2 or in the 2s1/2 orbitals.
A nearly one-to-one correspondence is found between experimental and
theoretical levels up to an excitation energy of 4 MeV.
Experimental data and shell model calculations are interpreted in terms of
the Nilsson diagram and the particle-rotor model, showing the strongly coupled
nature of the bands in this prolate nucleus. Nine values of K(pi) are proposed
for the levels observed in this experiment.
As a by-result it is shown that the values of the experimental magnetic
moments in 1f7/2 nuclei are well reproduced without quenching the nucleon
g-factors.Comment: 13 pages, 8 figure
From seaweeds to cosmeceutics: A multidisciplinar approach
Macroalgae are widespread on the coasts of all the globe and lead to a negative ecological impact, requiring expensive remediations. Therefore, the valorization of invasive seaweed as a renewable source of bioactive products could represent a valid solution. In this context, three algal biomasses, belonging to brown, green, and red families (Sargassum muticum, Ulva lactuca, Solieria filiformis), collected in the venetian Laguna, were investigated as a source of active compounds for the formulation of cosmeceutics. Microwave (MW) and ultrasound (US) were applied to enhance the algae extraction by means of a hydroalcoholic solution. According to total phenolic content (TPC) evaluation, MW demonstrated the best performing outcomes, resulting in 19.77, 22.02, and 16.94 mgGAE/gExtr (30 min at 90â—¦C) for brown, green, and red algae, respectively. Antioxidant activity was tested as well, showing comparable trends (49.19, 26.24, and 3.02 mmolTrolox eq./gExtr for brown, green, and red algae, respectively). Due to natural algae predisposition to absorb contaminants, the metal content analysis helped to screen the applicability of these extracts, identifying Ulva lactuca as the most suitable source of antioxidants for cosmetic formulations. This MW extract was then adopted to formulate two different preparations, namely a gel and an emulsion. Thermal and mechanical tests confirmed the stability of each formulation, together with neutral organoleptic characteristics. Finally, the actives release was investigated by means of a tape stripping essay, showing an efficient controlled release for gel formulation, even after 7 h of test. The produced cosmeceutics merged non-conventional extraction technologies with formulation expertise, offering a valuable alternative to solve the macroalgae disposal issue
Is there any clinical relevant difference between non mosaic Klinefelter Syndrome patients with or without Androgen Receptor variations?
Klinefelter Syndrome (KS) is the most common chromosomal disorder in men leading to non-obstructive azoospermia. Spermatozoa can be found by TESE in about 50% of adults with KS despite severe testicular degeneration. We evaluated AR variations and polymorphism length in 135 non-mosaic KS patients, aimed to find possible correlation with clinical features, sex hormones and sperm retrieval. Among 135 KS patients we found AR variations in eight subjects (5.9%). All variations but one caused a single amino acid substitution. Four variations P392S, Q58L, L548F, A475V found in six patients had been previously described to be associated with different degrees of androgen insensitivity. Moreover we observed in two patients Y359F and D732D novel variations representing respectively a missense variation and a synonymous variation not leading to amino acid substitution. All the Klinefelter patients with AR gene variations were azoospermic. Spermatozoa were retrieved with TESE for two men (40%), sperm retrieval was unsuccessful in other 3 patients. This is the only study reporting AR variations in KS patients. Relevant clinical differences not emerged between AR mutated and not AR mutated KS patients, but does each variation play an important role in the trasmission to the offspring obtained by ART in this patients
- …