133 research outputs found

    Depression with melancholic features is associated with higher long-term risk for dementia

    Get PDF
    BACKGROUND: Depression has been reported to increase the risk of subsequently developing dementia, but the nature of this relation remains to be elucidated. Depression can be a prodrome/manifestation of dementia or an early risk factor, and the effect may differ according to depression subtypes. Our aim was to study the association between early-onset depression and different depression subtypes, and the later occurrence of dementia. METHODS: We conducted a cohort study including 322 subjects with depression, recruited between 1977 and 1984. A comparison cohort (non-exposed) was recruited retrospectively, to include 322 subjects admitted at the same hospital for routine surgery (appendicectomy or cholecystectomy), at the same period as the depressed cohort. Subjects were contacted again between 2009 and 2014, to assess their dementia status. We computed the risk for dementia in subjects with early onset depression and quantified the association between different depression subtypes (namely melancholic, anxious, and psychotic) and dementia. RESULTS: The odds of dementia were increased by 2.90 times (95% C.I. 1.61-5.21; p<0.0001) for the depressed cohort when compared to the surgical cohort. When the analysis was restricted to patients younger than 45 years old at baseline, the odds for dementia in the depressed cohort were also significantly higher when compared to the surgical cohort (8.53; 95% C.I. 2.40-30.16). In the multivariate Cox analysis, subjects having depression with melancholic features had an increased risk for developing dementia compared to those without melancholic features (HR=3.64; 95% C.I. 1.78-11.26; p=0.025). LIMITATIONS: About 59% of the participants with depression and 53% of those non-exposed were lost during follow up. The inclusion of biological biomarkers would strengthen the results. The sample included a low number of bipolar patients. CONCLUSIONS: These results support depression as an early risk factor for dementia. Depression with melancholic features was found as an important risk factor for dementia, playing a main role in the relation between these disorders

    The Transmembrane Isoform of Plasmodium falciparum MAEBL Is Essential for the Invasion of Anopheles Salivary Glands

    Get PDF
    Malaria transmission depends on infective stages in the mosquito salivary glands. Plasmodium sporozoites that mature in midgut oocysts must traverse the hemocoel and invade the mosquito salivary glands in a process thought to be mediated by parasite ligands. MAEBL, a homologue of the transmembrane EBP ligands essential in merozoite invasion, is expressed abundantly in midgut sporozoites. Alternative splicing generates different MAEBL isoforms and so it is unclear what form is functionally essential. To identify the MAEBL isoform required for P. falciparum (NF54) sporozoite invasion of salivary glands, we created knockout and allelic replacements each carrying CDS of a single MAEBL isoform. Only the transmembrane form of MAEBL is essential and is the first P. falciparum ligand validated as essential for invasion of Anopheles salivary glands. MAEBL is the first P. falciparum ligand experimentally determined to be essential for this important step in the life cycle where the vector becomes infectious for transmitting sporozoites to people. With an increasing emphasis on advancing vector-based transgenic methods for suppression of malaria, it is important that this type of study, using modern molecular genetic tools, is done with the agent of the human disease. Understanding what P. falciparum sporozoite ligands are critical for mosquito transmission will help validate targets for vector-based transmission-blocking strategies

    Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    Get PDF
    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders

    Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice

    Get PDF
    BACKGROUND: Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RESULTS: RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. CONCLUSION: Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections

    A population-based study of asthma, quality of life, and occupation among elderly Hispanic and non-Hispanic whites: a cross-sectional investigation

    Get PDF
    BACKGROUND: The U.S. population is aging and is expected to double by the year 2030. The current study evaluated the prevalence of asthma and its correlates in the elderly Hispanic and non-Hispanic white population. METHODS: Data from a sample of 3021 Hispanics and non-Hispanic White subjects, 65 years and older, interviewed as part of an ongoing cross-sectional study of the elderly in west Texas, were analyzed. The outcome variable was categorized into: no asthma (reference category), current asthma, and probable asthma. Polytomous logistic regression analysis was used to assess the relationship between the outcome variable and various socio-demographic measures, self-rated health, asthma symptoms, quality of life measures (SF-12), and various occupations. RESULTS: The estimated prevalence of current asthma and probable asthma were 6.3% (95%CI: 5.3–7.2) and 9.0% (95%CI: 7.8–10.1) respectively. The majority of subjects with current asthma (Mean SF-12 score 35.8, 95%CI: 34.2–37.4) or probable asthma (35.3, 34.0–36.6) had significantly worse physical health-related quality of life as compared to subjects without asthma (42.6, 42.1–43.1). In multiple logistic regression analyses, women had a 1.64 times greater odds of current asthma (95%CI: 1.12–2.38) as compared to men. Hay fever was a strong predictor of both current and probable asthma. The odds of current asthma were 1.78 times (95%CI: 1.24–2.55) greater among past smokers; whereas the odds of probable asthma were 2.73 times (95%CI: 1.77–4.21) greater among current smokers as compared to non-smokers. Similarly fair/poor self rated health and complaints of severe pain were independently associated with current and probable asthma. The odds of current and probable asthma were almost two fold greater for obesity. When stratified by gender, the odds were significantly greater among females (p-value for interaction term = 0.038). The odds of current asthma were significantly greater for farm-related occupations (adjusted OR = 2.09, 95%CI: 1.00–4.39); whereas the odds were significantly lower among those who reported teaching as their longest held occupation (adjusted OR = 0.36, 95%CI = 0.18–0.74). CONCLUSION: This study found that asthma is a common medical condition in the elderly and it significantly impacts quality of life and general health status. Results support adopting an integrated approach in identifying and controlling asthma in this population

    American palm ethnomedicine: A meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many recent papers have documented the phytochemical and pharmacological bases for the use of palms (<it>Arecaceae</it>) in ethnomedicine. Early publications were based almost entirely on interviews that solicited local knowledge. More recently, ethnobotanically guided searches for new medicinal plants have proven more successful than random sampling for identifying plants that contain biodynamic ingredients. However, limited laboratory time and the high cost of clinical trials make it difficult to test all potential medicinal plants in the search for new drug candidates. The purpose of this study was to summarize and analyze previous studies on the medicinal uses of American palms in order to narrow down the search for new palm-derived medicines.</p> <p>Methods</p> <p>Relevant literature was surveyed and data was extracted and organized into medicinal use categories. We focused on more recent literature than that considered in a review published 25 years ago. We included phytochemical and pharmacological research that explored the importance of American palms in ethnomedicine.</p> <p>Results</p> <p>Of 730 species of American palms, we found evidence that 106 species had known medicinal uses, ranging from treatments for diabetes and leishmaniasis to prostatic hyperplasia. Thus, the number of American palm species with known uses had increased from 48 to 106 over the last quarter of a century. Furthermore, the pharmacological bases for many of the effects are now understood.</p> <p>Conclusions</p> <p>Palms are important in American ethnomedicine. Some, like <it>Serenoa repens </it>and <it>Roystonea regia</it>, are the sources of drugs that have been approved for medicinal uses. In contrast, recent ethnopharmacological studies suggested that many of the reported uses of several other palms do not appear to have a strong physiological basis. This study has provided a useful assessment of the ethnobotanical and pharmacological data available on palms.</p

    Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    Get PDF
    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism

    Molecular Evidence for a Functional Ecdysone Signaling System in Brugia malayi

    Get PDF
    Filarial parasites such as Brugia malayi and Onchocerca volvulus are the causative agents of the tropical diseases lymphatic filariasis and onchocerciasis, which infect 150 million people, mainly in Africa and Southeast Asia. Filarial nematodes have a complex life cycle that involves transmission and development within both mammalian and insect hosts. The successful completion of the life cycle includes four molts, two of which are triggered upon transmission from one host to the other, human and mosquito, respectively. Elucidation of the molecular mechanisms involved in the molting processes in filarial nematodes may yield a new set of targets for drug intervention. In insects and other arthropods molting transitions are regulated by the steroid hormone ecdysone that interacts with a specialized hormone receptor composed of two different proteins belonging to the family of nuclear receptors. We have cloned from B. malayi two members of the nuclear receptor family that show many sequence and biochemical properties consistent with the ecdysone receptor of insects. This finding represents the first report of a functional ecdysone receptor homolog in nematodes. We have also established a transgenic hormone induction assay in B. malayi that can be used to discover ecdysone responsive genes and potentially lead to screening assays for active compounds for pharmaceutical development
    corecore