3 research outputs found

    An accurate record of volcanic ash fall deposition as characterized by dispersed organic matter in a Lower Permian tonstein bed (Faxinal Coalfield, Paraná Basin, Brazil)

    Get PDF
    For the first time, the dispersed organic matter in the tonstein layer interbedded with a coal seam in the Faxinal Coalfield (Sakmarian, Southern Paraná Basin, Brazil) is characterized. The deposition of clusters of pollen grains was highly influenced by the intense ash fall process that probably occurred during seasonal dehiscence of reproductive structures. The well-preserved phytoclasts with their upper and lower leaf cuticles stuck together indicate that the rapid fall of ash on this material hindered organic biodegradation. The preservation of seemingly autochthonous Botryococcus colonies at the top of the tonstein layer is evidence of the subaqueous deposition of this layer. The darkening in cuticles and xylem phytoclasts can be attributed to different causes: the thermal influence of ash fall during deposition, chemical effects of the ash, prolonged oxidation of organic matter in low water level conditions or the burning of plant organs by wildfires. Analyses of dispersed organic matter along the tonstein layer showed that the organic matter succession reflects the composition of different plant strata (herbaceous pteridophytes and arboreal glossopterids-cordaitaleans) around the deposition site

    Organic and mineral matter changes due to oil generation, saturation and expulsion processes based on artificial maturation experiments

    Get PDF
    Hydrous pyrolysis experiments were conducted on immature organic-rich rock with type-I kerogen to evaluate petroleum generation, saturation and expulsion processes. The experiments were carried out under isothermal conditions at ten different temperatures (280° through 360°C) for nine different time spans between 18 and 144h. Rock samples recovered from the experiments were analyzed for total organic carbon (TOC–weight%), Rock-Eval pyrolysis, vitrinite reflectance (Ro%), spectral fluorescence and visual characterization of organic matter under the microscopy. TOC, S2 and HI tend to decrease with increasing temperature and duration of the experiments as expected. The Ro% values reach up to 1.14% in the most severe experiment (i.e. 360°C/96h). The Ro% is believed to be suppressed due to hydrogen incorporation from bitumen. The bitumen production was observed with the increase of transformation index (TI) and two types of bitumen were differentiated by fluorescence color. The bitumen with yellow fluorescence was mainly composed of saturate and aromatic hydrocarbons that were probably generated earlier than the bitumen with brown fluorescence which is rich in NSO compounds. The greatest bitumen saturation occurs at TI around of 41% to 45%, when the S1 reaches its highest values. The decrease of bitumen saturation and consequent oil expulsion is marked by a reduction in S1 values and fluorescence color. This phenomenon occurs simultaneously with the development of fractures and voids in the mineral matrix which reduces the oil retention capability and facilitates the expulsion process. These observations enhanced the understanding of oil generation and saturation processes, as well as primary migration, expulsion and type of generated bitumen

    Organic and mineral matter changes due to oil generation, saturation and expulsion processes based on artificial maturation experiments

    Get PDF
    Hydrous pyrolysis experiments were conducted on immature organic-rich rock with type-I kerogen to evaluate petroleum generation, saturation and expulsion processes. The experiments were carried out under isothermal conditions at ten different temperatures (280° through 360°C) for nine different time spans between 18 and 144h. Rock samples recovered from the experiments were analyzed for total organic carbon (TOC–weight%), Rock-Eval pyrolysis, vitrinite reflectance (Ro%), spectral fluorescence and visual characterization of organic matter under the microscopy. TOC, S2 and HI tend to decrease with increasing temperature and duration of the experiments as expected. The Ro% values reach up to 1.14% in the most severe experiment (i.e. 360°C/96h). The Ro% is believed to be suppressed due to hydrogen incorporation from bitumen. The bitumen production was observed with the increase of transformation index (TI) and two types of bitumen were differentiated by fluorescence color. The bitumen with yellow fluorescence was mainly composed of saturate and aromatic hydrocarbons that were probably generated earlier than the bitumen with brown fluorescence which is rich in NSO compounds. The greatest bitumen saturation occurs at TI around of 41% to 45%, when the S1 reaches its highest values. The decrease of bitumen saturation and consequent oil expulsion is marked by a reduction in S1 values and fluorescence color. This phenomenon occurs simultaneously with the development of fractures and voids in the mineral matrix which reduces the oil retention capability and facilitates the expulsion process. These observations enhanced the understanding of oil generation and saturation processes, as well as primary migration, expulsion and type of generated bitumen
    corecore