194 research outputs found

    Association between arterial stiffness and variations in estrogen-related genes

    Get PDF
    available in PMC 2010 April 1.Increased arterial stiffness and wave reflection have been identified as cardiovascular disease risk factors. In light of significant sex differences and the moderate heritability of vascular function measures, we hypothesized that variation in the genes coding for oestrogen receptors α (ESR1) and ÎČ (ESR2) and aromatase (CYP19A1) is associated with aortic stiffness and pressure wave reflection as measured by non-invasive arterial tonometry. In all, 1261 unrelated Framingham Offspring Study participants who attended the seventh examination cycle (mean age 62±10 years, 52% women) and had arterial tonometry and genotyping data were included in the study. Analysis of covariance was used to assess the association of polymorphisms with forward wave amplitude, augmented pressure, augmentation index (AI), carotid–femoral pulse wave velocity and mean arterial pressure with adjustment for potential confounders. In the sex-pooled analysis, those homozygous for the minor allele at any of four ESR1 variants that were in strong linkage disequilibrium ((TA)n, rs2077647, rs2234693 and rs9340799) had on an average 18% higher augmented pressure and 16% greater AI compared with carriers of one or two major alleles (P=0.0002–0.01). A similar magnitude of association was detected in those homozygous for the common allele at two ESR2 single-nucleotide polymorphisms (P=0.007–0.02). Our results are consistent with the hypothesis that variation in ESR1 and ESR2, but not CYP19A1, is associated with an increased wave reflection that may contribute to associations between these variants and adverse clinical events demonstrated earlier. Our findings will need to be replicated in additional cohorts

    How do African SMEs respond to climate risks? Evidence from Kenya and Senegal

    Get PDF
    This paper investigates to what extent and how small and medium-sized enterprises (SMEs) in poor countries are adapting to climate risks using data from 325 SMEs in the semi-arid regions of Kenya and Senegal. There is a clear role for public policy in facilitating good adaptation. The ability of firms to respond to climate risks depends on factors that can be shaped through policy intervention. Findings show that financial barriers are a key reason why firms resort to reactive coping mechanisms, while general business support, access to information technology and adaptation assistance encourages sustainable adaptation responses.UK Government’s Department for International Development (DfID)Financial support from the Grantham Foundation for the Protection of the Environment, and the UK Economic and Social Research Council (ESRC) through the Centre for Climate Change Economics and Polic

    Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer

    Get PDF
    Lysine acetyltransferase 6A (KAT6A) and its paralog KAT6B form stoichiometric complexes with bromodomain- and PHD finger-containing protein 1 (BRPF1) for acetylation of histone H3 at lysine 23 (H3K23). We report that these complexes also catalyze H3K23 propionylation in vitro and in vivo. Immunofluorescence microscopy and ATAC-See revealed the association of this modification with active chromatin. Brpf1 deletion obliterates the acylation in mouse embryos and fibroblasts. Moreover, we identify BRPF1 variants in 12 previously unidentified cases of syndromic intellectual disability and demonstrate that these cases and known BRPF1 variants impair H3K23 propionylation. Cardiac anomalies are present in a subset of the cases. H3K23 acylation is also impaired by cancer-derived somatic BRPF1 mutations. Valproate, vorinostat, propionate and butyrate promote H3K23 acylation. These results reveal the dual functionality of BRPF1-KAT6 complexes, shed light on mechanisms underlying related developmental disorders and various cancers, and suggest mutation-based therapy for medical conditions with deficient histone acylation

    Genomic analyses in Cornelia de Lange Syndrome and related diagnoses: Novel candidate genes, <scp>genotype–phenotype</scp> correlations and common mechanisms

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (&gt;60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS‐like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or “DTRs”). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype–phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population

    Evidence-Based Guidelines for Cardiovascular Disease Prevention in Women

    Get PDF
    Significant advances in our knowledge about interventions to prevent cardiovascular disease (CVD) have occurred since publication of the first female-specific recommendations for preventive cardiology in 1999.1 Despite research-based gains in the treatment of CVD, it remains the leading killer of women in the United States and in most developed areas of the world.2–3 In the United States alone, more than one half million women die of CVD each year, exceeding the number of deaths in men and the next 7 causes of death in women combined. This translates into approximately 1 death every minute.2 Coronary heart disease (CHD) accounts for the majority of CVD deaths in women, disproportionately afflicts racial and ethnic minorities, and is a prime target for prevention.1–2 Because CHD is often fatal, and because nearly two thirds of women who die suddenly have no previously recognized symptoms, it is essential to prevent CHD.2 Other forms of atherosclerotic/thrombotic CVD, such as cerebrovascular disease and peripheral arterial disease, are critically important in women. Strategies known to reduce the burden of CHD may have substantial benefits for the prevention of noncoronary atherosclerosis, although they have been studied less extensively in some of these settings

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
    • 

    corecore