59 research outputs found

    Artificial plasma experiments. Chemical release observations associated with the CRRES program

    Get PDF
    This report submitted is the final report and covers work performed under the contract for the period Apr. 12, 1985 - Dec. 23, 1993. The CRRES program investigated earth plasma environment by active experiments in which metal vapors were injected into the upper atmosphere and magnetosphere. The vapor clouds perturb the ambient ionospheric / magnetospheric environment and the effects could be monitored by passive observing instruments. Our part of the CRRES program, the Artificial Plasma Experiment program, was a ground based and aircraft based investigation to observe artificial chemical releases by optical techniques

    Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission

    Get PDF
    This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components

    An Evening Sector Ps 6 - Omega Band Event

    Get PDF
    Article draft. Author list indicative and roughly corresponds to amount of contribution to the article to date.Abstract. Ps 6 magnetic disturbances and associated optical forms known as omega bands are usually associated with the morning sector. Some evidence for similar phenomenology in the evening sector has been presented by Solovyev et al. (1999). We confirm and extend those results with high time resolution magnetic and imaging observations from Athabasca University Geophysical Observatory for an event that took place on July 27, 2003, along with conjugate hemisphere imaging from the Polar spacecraft. The observed signatures indicate sunward drift (westward in the evening sector). Magnetic perturbations feature negative Y and transitional Z indicating westward passage of poleward equivalent currents overhead. As has been suggested by Connors et al. (2003) to be often the case for morning sector Ps 6/omega bands, initiation of the evening sector event coincided with substorm onset. From optical and magnetic data we obtain consistent results for the drift rate of the forms, which changed during the event. An inner magnetospheric source is suggested, with triggering of the onset by an increase in solar wind speed

    Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all-sky imager and DMSP

    Get PDF
    Recent imager and radar observations in the nightside polar cap have shown evidence that polar cap patches are associated with localized flow channels. To understand how flow channels propagate from the dayside auroral oval into the polar cap, we use an all-sky imager in Antarctica and DMSP (F13, F15, F16, F17 and F18) to determine properties of density and flows associated with dayside polar cap patches. We identified 50 conjunction events during the southern winter seasons of 2007–2011. In a majority (45) of events, longitudinally narrow flow enhancements directed anti-sunward are found to be collocated with the patches, have velocities (up to a few km/s) substantially larger than the large-scale background flows (~500 m/s) and have widths comparable to patch widths (~400 km). While the patches start with poleward moving auroral forms (PMAFs) as expected, many PMAFs propagate azimuthally away from the noon over a few hours of MLT, resulting in formation of polar cap patches quite far away from the noon, as early as ~6 MLT. The MLT separation from the noon is found to be proportional to the IMF |By|. Fast polar cap flows of \u3e~1500 m/s are predominantly seen during large IMF |By| and small |Bz|. The presence of fast, anti-sunward flow channels associated with the polar cap patches suggests that the flow channels form in the dayside auroral oval through transient reconnection and can be the source of flow channels propagating into the polar cap

    TIMED Imaging Photometer Experiment (TIPE)

    Get PDF
    This document contains a summary of the TIMED Imaging Photometer Experiment (TIPE) instrument study at the time of the termination of project due to TIPE being de-selected from the Thermosphere, Ionosphere and Mesosphere Energetics and Dynamics (TIMED) mission

    Time Evolution of the Substorm Current Wedge from Ground and Space-based Magnetic Fields

    Get PDF
    PDF of a posterOver the past several years, intensive efforts have resulted in a significant improvement in the ground instrumentation for auroral studies in North America. A major part of this is due to the THEMIS ground program, both in the U.S. and in Canada. The THEMIS Ground-Based Observatory network has fielded 10 additional magnetometers in Canada and Alaska. Further THEMIS magnetometers are part of the GEONS outreach effort, found in the continental U.S. and Alaska. Athabasca University initiatives and collaborations have made yet further magnetometer data available, most notably from a new network of instruments in central Alberta. Several stations of the University of Tokyo STEP network remain operational, and some have been upgraded. There is finally a dense enough set of magnetic data that techniques based on forward modeling, and most relevant to the opportunity afforded by THEMIS, Automated Regional Modeling (ARM), can be reliably used. These techniques specify where net field-aligned current (FAC) and ionospheric electric current flow are located. In some cases the Pedersen system can also be included based on data. Even when it is not, it can be considered collocated with electrojet locations given by ARM. The extension into space of the FAC (net or Pedersen) allows comparison with the perturbations observed at THEMIS. We present results from an event on March 13, 2007, during which THEMIS in its early orbital configuration was over central North America, clear weather prevailed, and a substorm took place whose perturbations were ideally suited for inversion using ARM. At about 5 UT, activations were detected from the ground with magnetic perturbations also detected from THEMIS above the affected stations. The ground perturbations are very well represented by a three-dimensional substorm current wedge (SCW) system, and perturbations in space indicate radial propagation at a time when the electrojet was expanding poleward. Little longitudinal propagation of the SCW is suggested by the ground data

    Time Evolution of the Substorm Current Wedge from Ground and Space-based Magnetic Fields

    Get PDF
    Poster SM23A-1188 at AGU Fall Meeting 2007. Updated version of a poster from STAMMS-2, presented in September.Over the past several years, intensive efforts have resulted in a significant improvement in the ground instrumentation for auroral studies in North America. A major part of this is due to the THEMIS ground program, both in the U.S. and in Canada. The THEMIS Ground-Based Observatory network has fielded 10 additional magnetometers in Canada and Alaska. Further THEMIS magnetometers are part of the GEONS outreach effort, found in the continental U.S. and Alaska. Athabasca University initiatives and collaborations have made yet further magnetometer data available, most notably from the new AUTUMN network of instruments in central Alberta, and others in Quebec. Several stations of the University of Tokyo STEP network remain operational, and some have been upgraded. There is finally a dense enough set of magnetic data that techniques based on forward modeling, and most relevant to the opportunity afforded by THEMIS, Automated Regional Modeling (ARM), can be reliably used. These techniques specify where net field-aligned current (FAC) and ionospheric electric current flow are located. In some cases the Pedersen system can also be included based on data. Even when it is not, it can be considered collocated with electrojet locations given by ARM. The extension into space of the FAC (net or Pedersen) allows comparison with the perturbations observed at THEMIS. We present results from an event on March 13, 2007, during which THEMIS in its early orbital configuration was magnetically conjugate to central North America, clear weather prevailed, and a substorm took place whose perturbations were ideally suited for inversion using ARM. At about 5 UT, activations were detected from the ground with magnetic perturbations also detected from THEMIS. The ground perturbations are well represented by a three-dimensional substorm current wedge (SCW) system, and perturbations in space indicate radial propagation at a time when the electrojet expanded poleward. Little longitudinal propagation of the SCW is suggested by the ground data.Canada Research Chairs Canada Foundation for Innovation NSERC Athabasca Universit
    • …
    corecore