109 research outputs found

    Neurobiology: The Eye within the Brain

    Get PDF
    SummaryAll vertebrates except mammals have photoreceptors within their brains; however, the light-sensitive cells have never been unambiguously identified. A new paper provides direct evidence of photosensitivity in cerebrospinal fluid (CSF)-contacting neurons in quail brain that mediate the seasonal reproductive response

    Effect of Transplanting Suprachiasmatic Nuclei from Donors of Different Ages into Completely SCN Lesioned Hamsters

    Get PDF
    The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Ralph and colleagues/14/provided recent new evidence for this by transplanting SCNs between golden hamsters with different genetically determined periods and producing circadian rhythmsof running wheel activity with periods characteristic of the donor. We have extended these studies in order to evaluate the age range of donor tissue that can be used for transplantation. SCN of hamsters from embryonic day 11 through postnatal day 12 can serve as functional grafts to restore rhythmicity to arrhythmic SCN lesioned animals. The time between SCN transplantation and onset of rhythmicity does not depend on the age of the donor. The presence of patches containing vasoactive intestinal peptide (VIP) immunoreactive cells is a good indicator of graft success, while its absence is correlated with a lack of transplant effect. The 18 day span during which SCN tissue can be harvested for transplantation should expand the uses to which this technique can be put. Our results also suggest that it would be advantageous to examine the age range of neural tissue that ca’n be used in other transplantation models

    Factors Determining the Restoration of Circadian Behavior by Hypothalamic Transplants

    Get PDF
    The expression of locomotor activity by golden hamsters is temporally controlled by circadian oscillators contained within the suprachiasmatic nucleus (SCN). A genetic mutation has been found that alters the freerunning period of the locomotor activity rhythm from the wild-type value of ~24 hours to ~20 hours in homozygous mutants. It has been shown previously that a transplant of fetal hypothalamic tissue containing the SCN to a host rendered arrhythmic by a complete lesion of the SCN restores rhythmicity with the freerunning period which is normally expressed by the donor genotype. To investigate the mechanisms by which the SCN controls the temporal organization of behavior, we made partial lesions to the SCN of hosts of one genotype, and then placed hypothalamic implants from fetal donors of a different genotype into the lesion site. By varying the size of the host's partial SCN lesion and the duration of time between lesioning and transplantation, we have attempted to alter the relative amount of host and donor control over the expression of locomotor activity. We found that the expression of donor rhythmicity requires the presence of a lesion to the host SCN, and that the incidence of donor expression increased as a function of host SCN lesion size. Neither the duration of time between lesioning and transplantation, nor the location of the transplant within the third ventricle had independent effects on the incidence of donor rhythm expression; however, there was a strong suggestion of an effect of their interaction

    Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response

    Get PDF
    In mammals, photoreception is restricted to cones, rods and a subset of retinal ganglion cells. By contrast, non-mammalian vertebrates possess many extraocular photoreceptors but in many cases the role of these photoreceptors and their underlying photopigments is unknown. In birds, deep brain photoreceptors have been shown to sense photic changes in daylength (photoperiod) and mediate seasonal reproduction. Nonetheless, the specific identity of the opsin photopigment ‘sensor’ involved has remained elusive. Previously, we showed that vertebrate ancient (VA) opsin is expressed in avian hypothalamic neurons and forms a photosensitive molecule. However, a direct functional link between VA opsin and the regulation of seasonal biology was absent. Here, we report the in vivo and in vitro absorption spectra (λmax = ∼490 nm) for chicken VA photopigments. Furthermore, the spectral sensitivity of these photopigments match the peak absorbance of the avian photoperiodic response (λmax = 492 nm) and permits maximum photon capture within the restricted light environment of the hypothalamus. Such a correspondence argues strongly that VA opsin plays a key role in regulating seasonal reproduction in birds

    Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian Vertebrates

    Get PDF
    In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term Opn4x. RT-PCR analysis in chicken, zebrafish, and Xenopus identifies expression of both Opn4m and Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye, Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express Opn4x. Importantly, we show that a representative of the new melanopsins (chicken Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both Opn4m and Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x

    Neurological complications during veno-venous extracorporeal membrane oxygenation: Does the configuration matter? A retrospective analysis of the ELSO database

    Get PDF
    Background Single- (SL) and double-lumen (DL) catheters are used in clinical practice for veno-venous extracorporeal membrane oxygenation (V-V ECMO) therapy. However, information is lacking regarding the effects of the cannulation on neurological complications. Methods A retrospective observational study based on data from the Extracorporeal Life Support Organization (ELSO) registry. All adult patients included in the ELSO registry from 2011 to 2018 submitted to a single run of V-V ECMO were analyzed. Propensity score (PS) inverse probability of treatment weighting estimation for multiple treatments was used. The average treatment effect (ATE) was chosen as the causal effect estimate of outcome. The aim of the study was to evaluate differences in the occurrence and the type of neurological complications in adult patients undergoing V-V ECMO when treated with SL or DL cannulas. Results From a population of 6834 patients, the weighted propensity score matching included 6245 patients (i.e., 91% of the total cohort; 4175 with SL and 20,270 with DL cannulation). The proportion of patients with at least one neurological complication was similar in the SL (306, 7.2%) and DL (189, 7.7%; odds ratio 1.10 [95% confidence intervals 0.91–1.32]; p = 0.33). After weighted propensity score, the ATE for the occurrence of least one neurological complication was 0.005 (95% CI − 0.009 to 0.018; p = 0.50). Also, the occurrence of specific neurological complications, including intracerebral hemorrhage, acute ischemic stroke, seizures or brain death, was similar between groups. Overall mortality was similar between patients with neurological complications in the two groups. Conclusions In this large registry, the occurrence of neurological complications was not related to the type of cannulation in patients undergoing V-V ECMO

    Circadian organization in the vertebrates

    No full text
    corecore