2,852 research outputs found

    Thermodynamics of noncommutative quantum Kerr black holes

    Full text link
    Thermodynamic formalism for rotating black holes, characterized by noncommutative and quantum corrections, is constructed. From a fundamental thermodynamic relation, equations of state and thermodynamic response functions are explicitly given and the effect of noncommutativity and quantum correction is discussed. It is shown that the well known divergence exhibited in specific heat is not removed by any of these corrections. However, regions of thermodynamic stability are affected by noncommutativity, increasing the available states for which some thermodynamic stability conditions are satisfied.Comment: 16 pages, 9 figure

    Wormholes as Basis for the Hilbert Space in Lorentzian Gravity

    Get PDF
    We carry out to completion the quantization of a Friedmann-Robertson-Walker model provided with a conformal scalar field, and of a Kantowski-Sachs spacetime minimally coupled to a massless scalar field. We prove that the Hilbert space determined by the reality conditions that correspond to Lorentzian gravity admits a basis of wormhole wave functions. This result implies that the vector space spanned by the quantum wormholes can be equipped with an unique inner product by demanding an adequate set of Lorentzian reality conditions, and that the Hilbert space of wormholes obtained in this way can be identified with the whole Hilbert space of physical states for Lorentzian gravity. In particular, all the normalizable quantum states can then be interpreted as superpositions of wormholes. For each of the models considered here, we finally show that the physical Hilbert space is separable by constructing a discrete orthonormal basis of wormhole solutions.Comment: 23 pages (Latex), Preprint IMAFF-RC-04-94, CGPG-94/5-

    Thiemann transform for gravity with matter fields

    Get PDF
    The generalised Wick transform discovered by Thiemann provides a well-established relation between the Euclidean and Lorentzian theories of general relativity. We extend this Thiemann transform to the Ashtekar formulation for gravity coupled with spin-1/2 fermions, a non-Abelian Yang-Mills field, and a scalar field. It is proved that, on functions of the gravitational and matter phase space variables, the Thiemann transform is equivalent to the composition of an inverse Wick rotation and a constant complex scale transformation of all fields. This result holds as well for functions that depend on the shift vector, the lapse function, and the Lagrange multipliers of the Yang-Mills and gravitational Gauss constraints, provided that the Wick rotation is implemented by means of an analytic continuation of the lapse. In this way, the Thiemann transform is furnished with a geometric interpretation. Finally, we confirm the expectation that the generator of the Thiemann transform can be determined just from the spin of the fields and give a simple explanation for this fact.Comment: LaTeX 2.09, 14 pages, no figure

    Asymptotically anti-de Sitter wormholes

    Get PDF
    Starting with a procedure for dealing with general asymptotic behaviors, we construct a quantum theory for asymptotically anti-de Sitter wormholes. We follow both the path integral formalism and the algebraic quantization program proposed by Ashtekar. By adding suitable surface terms, the Euclidean action of the asymptoically anti-de Sitter wormholes can be seen to be finite and gauge invariant. This action determines an appropriate variational problem for wormholes. We also obtain the wormhole wave functions of the gravitational model and show that all the physical states of the quantum theory are superpositions of wormhole states.Comment: 10 pages, RevTeX 3.0, LaTeX 2.0

    Inhomogeneous Loop Quantum Cosmology: Hybrid Quantization of the Gowdy Model

    Get PDF
    The Gowdy cosmologies provide a suitable arena to further develop Loop Quantum Cosmology, allowing the presence of inhomogeneities. For the particular case of Gowdy spacetimes with the spatial topology of a three-torus and a content of linearly polarized gravitational waves, we detail a hybrid quantum theory in which we combine a loop quantization of the degrees of freedom that parametrize the subfamily of homogeneous solutions, which represent Bianchi I spacetimes, and a Fock quantization of the inhomogeneities. Two different theories are constructed and compared, corresponding to two different schemes for the quantization of the Bianchi I model within the {\sl improved dynamics} formalism of Loop Quantum Cosmology. One of these schemes has been recently put forward by Ashtekar and Wilson-Ewing. We address several issues including the quantum resolution of the cosmological singularity, the structure of the superselection sectors in the quantum system, or the construction of the Hilbert space of physical states.Comment: 16 pages, version accepted for publication in Physical Review

    CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    Full text link
    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims. We present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods. We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300\AA was performed with the spectral synthesis codes MOOG and FITTING. Results. We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the planetary companion. Conclusions. We conclude that reliable carbon abundances can be derived for solar-type stars from the CH band at 4300\AA. We confirm two different slope trends for [C/Fe] with [Fe/H] because the behaviour is opposite for stars above and below solar values. We observe a flat distribution of the [C/Fe] ratio for all planetary masses, a finding that apparently excludes any clear connection between the [C/Fe] abundance ratio and planetary mass.Comment: 10 pages, 10 figures. Accepted to A&

    Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane

    Get PDF
    Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum ‘Xanthi’) plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater

    Ultra-pure digital sideband separation at sub-millimeter wavelengths

    Get PDF
    Deep spectral-line surveys in the mm and sub-mm range can detect thousands of lines per band uncovering the rich chemistry of molecular clouds, star forming regions and circumstellar envelopes, among others objects. The ability to study the faintest features of spectroscopic observation is, nevertheless, limited by a number of factors. The most important are the source complexity (line density), limited spectral resolution and insufficient sideband (image) rejection (SRR). Dual Sideband (2SB) millimeter receivers separate upper and lower sideband rejecting the unwanted image by about 15 dB, but they are difficult to build and, until now, only feasible up to about 500 GHz (equivalent to ALMA Band 8). For example ALMA Bands 9 (602-720 GHz) and 10 (787-950 GHz) are currently DSB receivers. Aims: This article reports the implementation of an ALMA Band 9 2SB prototype receiver that makes use of a new technique called calibrated digital sideband separation. The new method promises to ease the manufacturing of 2SB receivers, dramatically increase sideband rejection and allow 2SB instruments at the high frequencies currently covered only by Double Sideband (DSB) or bolometric detectors. Methods: We made use of a Field Programmable Gate Array (FPGA) and fast Analog to Digital Converters (ADCs) to measure and calibrate the receiver's front end phase and amplitude imbalances to achieve sideband separation beyond the possibilities of purely analog receivers. The technique could in principle allow the operation of 2SB receivers even when only imbalanced front ends can be built, particularly at very high frequencies. Results: This digital 2SB receiver shows an average sideband rejection of 45.9 dB while small portions of the band drop below 40 dB. The performance is 27 dB (a factor of 500) better than the average performance of the proof-of-concept Band 9 purely-analog 2SB prototype receiver.Comment: 5 page
    • 

    corecore