125 research outputs found

    Sparse Bounds for Bochner-Riesz Multipliers

    Get PDF
    The Bochner-Riesz multipliers Bδ B_{\delta } on Rn \mathbb R ^{n} are shown to satisfy a range of sparse bounds, for all 0<δ<n120< \delta < \frac {n-1}2 . The range of sparse bounds increases to the optimal range, as δ \delta increases to the critical value, δ=n12 \delta =\frac {n-1}2, even assuming only partial information on the Bochner-Riesz conjecture in dimensions n3 n \geq 3. In dimension n=2n=2, we prove a sharp range of sparse bounds. The method of proof is based upon a `single scale' analysis, and yields the sharpest known weighted estimates for the Bochner-Riesz multipliers in the category of Muckenhoupt weights.Comment: 15 pages, 2 figure

    Influence of Immunocastration and Diet on Meat and Fat Quality of Heavy Female and Male Pigs

    Get PDF
    Two experiments were carried out; one with female pigs and the other with male pigs destined for Teruel dry-cured ham production, to evaluate the effect of immunocastration (entire gilts-EG vs. immunocastrated gilts-IG and surgically castrated males vs. immunocastrated males-IM) and diet (control vs. high energy vs. low crude protein and amino acids) on meat quality and fat composition. Fifteen meat samples and eight fat samples of each treatment were analyzed in both experiments. In the case of males, six fat samples per treatment were analyzed to determine boar taint. Immunocastration is a good strategy in gilts intended for dry-cured ham production because improves meat composition; however, in males, immunocastration impairs the results of pork chemical composition compared with surgical castration. The IG presented a lower polyunsaturated/saturated fatty acids ratio than EG, improving fat technological quality. Diets had little effect on pork or fat quality in gilts, but a high-energy level using oilseeds and a low-crude-protein and -amino-acids diet from 80 to 137 kg of body weight could be interesting in IM to maintain or increase fat consistency, respectively. Moreover, in general, immunocastration is effective in avoiding boar taint in males.This research was funded by Agencia Estatal de Investigación—AEI—and Fondo Europeo de Desarrollo Regional—FEDER—(Project AGL2016-78532-R). L. Pérez-Ciria was supported by a fellowship from the Gobierno de Aragón in Spain

    The Megalocytivirus RBIV Induces Apoptosis and MHC Class I Presentation in Rock Bream (Oplegnathus fasciatus) Red Blood Cells

    Get PDF
    Rock bream iridovirus (RBIV) causes severe mass mortality in Korean rock bream (Oplegnathus fasciatus) populations. To date, immune defense mechanisms of rock bream against RBIV are unclear. While red blood cells (RBCs) are known to be involved in the immune response against viral infections, the participation of rock bream RBCs in the immune response against RBIV has not been studied yet. In this study, we examined induction of the immune response in rock bream RBCs after RBIV infection. Each fish was injected with RBIV, and virus copy number in RBCs gradually increased from 4 days post-infection (dpi), peaking at 10 dpi. A total of 318 proteins were significantly regulated in RBCs from RBIV-infected individuals, 183 proteins were upregulated and 135 proteins were downregulated. Differentially upregulated proteins included those involved in cellular amino acid metabolic processes, cellular detoxification, snRNP assembly, and the spliceosome. Remarkably, the MHC class I-related protein pathway was upregulated during RBIV infection. Simultaneously, the regulation of apoptosis-related proteins, including caspase-6 (CASP6), caspase-9 (CASP9), Fas cell surface death receptor (FAS), desmoplakin (DSP), and p21 (RAC1)-activated kinase 2 (PAK2) changed with RBIV infection. Interestingly, the expression of genes within the ISG15 antiviral mechanism-related pathway, including filamin B (FLNB), interferon regulatory factor 3 (IRF3), nucleoporin 35 (NUP35), tripartite motif-containing 25 (TRIM25), and karyopherin subunit alpha 3 (KPNA3) were downregulated in RBCs from RBIV-infected individuals. Overall, these findings contribute to the understanding of RBIV pathogenesis and host interaction

    Integrated Transcriptomic and Proteomic Analysis of Red Blood Cells from Rainbow Trout Challenged with VHSV Point Towards Novel Immunomodulant Targets

    Get PDF
    Integrated Transcriptomic and Proteomic Analysis of Red Blood Cells from Rainbow Trout Challenged with VHSV Point Towards Novel Immunomodulant TargetsThis work was supported by the European Research Council (ERC Starting Grant GA639249).The proteomic analysis was performed in the Proteomics Facility of the Spanish National Center for Biotechnology (CNB-CSIC) belonging to ProteoRed, PRB3-ISCIII, supported by grant PT17/001

    Regulatory circuits involving bud dormancy factor PpeDAM6

    Get PDF
    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3- enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression

    Effects of probiotics on cognitive and emotional functions in healthy older adults: Protocol for a double-blind randomized placebo-controlled crossover trial

    Get PDF
    Aging is a process that includes changes in cognitive and emotional functions,as well as changes in the diversity and integrity of gut microbiota. Probiotictreatments have recently been studied as a potential new therapeutic approachto alleviate a wide range of problems in other populations; however, clinicalstudies in older adults remain insufficient and limited. Thus, the aim of thisproject is to evaluate the efficacy of a multispecies probiotic formulation as atherapeutic strategy for attenuating the emotional and cognitive decline asso-ciated with aging in adults over the age of 55. This is a double‐blind randomizedplacebo‐controlled crossover trial involving at least 32 older adults andcomparing two conditions: (a) probiotic, providing a multispecies probiotic for10 weeks (Lactobacillus rhamnosusandBifidobacterium lactis); and (b) placebo,receiving a harmless substance (potato starch). Despite the increasing use ofprobiotics for the treatment of cognitive and emotional problems, no study hasyet focused on this group, to the best of our knowledge. Therapeutic strategiesof the kind outlined in this protocol will help to shed light on the current state ofknowledge about this topic, as well as promote health programs tailored to thispopulation, which would encourage active aging and healthy lifestyles. Not onlydo we expect improvements in the emotional dimension in terms of anxiety,stress, depression, and sleep quality, we also expect improvements in the cog-nitive dimension in terms of attention,memory, and decreased impulsivity

    Rainbow Trout Erythrocytes ex vivo Transfection With a DNA Vaccine Encoding VHSV Glycoprotein G Induces an Antiviral Immune Response

    Get PDF
    Fish red blood cells (RBCs), are integral in several biologic processes relevant to immunity, such as pathogen recognition, pathogen binding and clearance, and production of effector molecules and cytokines. So far, one of the best strategies to control and prevent viral diseases in aquaculture is DNA immunization. DNA vaccines (based on the rhabdoviral glycoprotein G [gpG] gene) have been shown to be effective against fish rhabdoviruses. However, more knowledge about the immune response triggered by DNA immunization is necessary to develop novel and more effective strategies. In this study, we investigated the role of fish RBCs in immune responses induced by DNA vaccines. We show for the first time that rainbow trout RBCs express gpG of viral hemorrhagic septicaemia virus (VHSV) (GVHSV) when transfected with the DNA vaccine ex vivo and modulate the expression of immune genes and proteins. Functional network analysis of transcriptome profiling of RBCs expressing GVHSV revealed changes in gene expression related to G-protein coupled receptor (GPCR)-downstream signaling, complement activation, and RAR related orphan receptor α (RORA). Proteomic profile functional network analysis of GVHSV-transfected RBCs revealed proteins involved in the detoxification of reactive oxygen species, interferon-stimulated gene 15 (ISG15) antiviral mechanisms, antigen presentation of exogenous peptides, and the proteasome. Conditioned medium of GVHSV-transfected RBCs conferred antiviral protection and induced ifn1 and mx gene expression in RTG-2 cells infected with VHSV. In summary, rainbow trout nucleated RBCs could be actively participating in the regulation of the fish immune response to GVHSV DNA vaccine, and thus may represent a possible carrier cells for the development of new vaccine approaches

    Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis

    Get PDF
    Methanogenic archaea are major players in the global carbon cycle and in the biotechnology of anaerobic digestion. The phylum Euryarchaeota includes diverse groups of methanogens that are interspersed with non-methanogenic lineages. So far, methanogens inhabiting hypersaline environments have been identified only within the order Methanosarcinales. We report the discovery of a deep phylogenetic lineage of extremophilic methanogens in hypersaline lakes and present analysis of two nearly complete genomes from this group. Within the phylum Euryarchaeota, these isolates form a separate, class-level lineage 'Methanonatronarchaeia' that is most closely related to the class Halobacteria. Similar to the Halobacteria, 'Methanonatronarchaeia' are extremely halophilic and do not accumulate organic osmoprotectants. The high intracellular concentration of potassium implies that 'Methanonatronarchaeia' employ the 'salt-in' osmoprotection strategy. These methanogens are heterotrophic methyl-reducers that use C 1 -methylated compounds as electron acceptors and formate or hydrogen as electron donors. The genomes contain an incomplete and apparently inactivated set of genes encoding the upper branch of methyl group oxidation to CO2 as well as membrane-bound heterodisulfide reductase and cytochromes. These features differentiate 'Methanonatronarchaeia' from all known methyl-reducing methanogens. The discovery of extremely halophilic, methyl-reducing methanogens related to haloarchaea provides insights into the origin of methanogenesis and shows that the strategies employed by methanogens to thrive in salt-saturating conditions are not limited to the classical methylotrophic pathway.Accepted Author ManuscriptBT/Environmental Biotechnolog

    IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells

    Get PDF
    Viral hemorrhagic septicemia virus (VHSV) infection appears to be halted in rainbow trout nucleated red blood cells (RBCs). Diverse mechanisms are thought to be related to the antiviral immune response of rainbow trout RBCs to VHSV. However, the specific rainbow trout RBC proteins that interact directly with VHSV are still unknown. In an attempt to identify VHSV-RBC protein interactions, we characterized the immunoprecipitated (IP) proteome of RBCs exposed to VHSV using an antibody against the N protein of VHSV. The IP proteomic characterization identified 31 proteins by mass spectrometry analysis. Among them, we identified interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), a protein belonging to a family of proteins that are induced after the production of type I interferon. Importantly, IFIT5 has been implicated in the antiviral immune response. We confirmed the participation of IFIT5 in the rainbow trout RBC antiviral response by examining the expression profile of IFIT5 in RBCs after VHSV exposure at transcriptional and protein levels. We detected a correlation between the highest IFIT5 expression levels and the decline in VHSV replication at 6 h post-exposure. In addition, silencing ifit5 resulted in a significant increase in VHSV replication in RBCs. Moreover, an increase in VHSV replication was observed in RBCs when the IFIT5 RNA-binding pocket cavity was modulated by using a natural compound from the SuperNatural II database. We performed a proximity ligation assay and detected a significant increase in positive cells among VHSV-exposed RBCs compared to unexposed RBCs, indicating protein-protein colocalization between IFIT5 and the glycoprotein G of VHSV. In summary, these results suggest a possible role of IFIT5 in the antiviral response of RBCs against VHSV.This work was supported by the European Research Council (ERC Starting Grant GA639249).The proteomic analysis was performed in the Proteomics Facility of the Spanish National Center for Biotechnology (CNB-CSIC) belonging to ProteoRed, PRB3-ISCIII, supported by grant PT17/001
    corecore