661 research outputs found

    Transparent and Robust Amphiphobic Surfaces Exploiting Nanohierarchical Surface-grown Metal-Organic Frameworks.

    Get PDF
    Highly amphiphobic (repelling both water and low surface tension liquids) and optically transparent surface treatments have widespread demand. By combining a rational growth of metal-organic frameworks (MOFs) with functionalization by environmentally safe, flexible alkyl groups, here we present surfaces with nanohierarchical morphology, comprising two widely differing nanoscale features. These nanohierarchical MOF films show excellent amphiphobicity. We further present three key features. First, we demonstrate the need to use flexible alkyl chains to achieve low drop sliding angles and self-cleaning. Second, our thin (∼200 nm) MOF films display excellent optical transparency and robustness. Third, the nanohierarchical morphology enables a unique combination of additional desirable properties, e.g., resistance to high-speed liquid impact (up to ∼35 m/s, Weber number >4 × 104), thermal stability up to 200 °C, scratch resistance, low ice adhesion for >10 icing/deicing cycles, stability in harsh acidic and basic environments, and capability to remove carcinogenic pollutants from water

    Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation

    Full text link
    Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT (CBCT) scans has become a serious concern. Patient-specific imaging dose calculation has been proposed for the purpose of dose management. While Monte Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers from low computational efficiency. In response to this problem, we have successfully developed a MC dose calculation package, gCTD, on GPU architecture under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray imaging dose received by a patient during a CT or CBCT scan. Techniques have been developed particularly for the GPU architecture to achieve high computational efficiency. Dose calculations using CBCT scanning geometry in a homogeneous water phantom and a heterogeneous Zubal head phantom have shown good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In terms of improved efficiency, it is found that gCTD attains a speed-up of ~400 times in the homogeneous water phantom and ~76.6 times in the Zubal phantom compared to EGSnrc. As for absolute computation time, imaging dose calculation for the Zubal phantom can be accomplished in ~17 sec with the average relative standard deviation of 0.4%. Though our gCTD code has been developed and tested in the context of CBCT scans, with simple modification of geometry it can be used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl

    Finding sands in the eyes: vulnerabilities discovery in IoT with EUFuzzer on human machine interface

    Get PDF
    In supervisory control and data acquisition (SCADA) systems or the Internet of Things (IoT), human machine interface (HMI) performs the function of data acquisition and control, providing the operators with a view of the whole plant and access to monitoring and interacting with the system. The compromise of HMI will result in lost of view (LoV), which means the state of the whole system is invisible to operators. The worst case is that adversaries can manipulate control commands through HMI to damage the physical plant. HMI often relies on poorly understood proprietary protocols, which are time-sensitive, and usually keeps a persistent connection for hours even days. All these factors together make the vulnerability mining of HMI a tough job. In this paper, we present EUFuzzer, a novel fuzzing tool to assist testers in HMI vulnerability discovery. EUFuzzer first identifies packet fields of the specific protocol and classifies all fields into four types, then using a relatively high efficiency fuzzing method to test HMI. The experimental results show that EUFuzzer is capable of identifying packet fields and revealing bugs. EUFuzzer also successfully triggers flaws of actual proprietary SCADA protocol implementation on HMI, which the SCADA software vendor has confirmed that four were zero-day vulnerabilities and has taken measures to patch up

    GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy

    Full text link
    Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on graphics processing unit (GPU) based on our previous work on CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called column generation approach to deal with its extremely large dimensionality on GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and 2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART

    Implementation of a motor control system for electric bus based on DSP

    Full text link
    © 2017 IEEE. Motor control system may be the most important part of electric vehicles. To implement the control strategies, a lot of practical problems need to be taken into account. In this paper, an induction motor control system for electric bus is developed based on digital signal processor (DSP). The control strategy is based on field-oriented control and space vector pulse width modulation. Over-modulation, field weakening control, PI controller and fault diagnosis are also applied in this DSP algorithm. As a practical product running on a real electric bus with an 100 kW induction motor, communication with vehicle control unit (VCU) by controller area network (CAN bus), control system safety and PC software designed for experiment at lab are also discussed. The transient and steady-state performances of this motor control system are analyzed by experiments. Its performance is satisfactory when applied to the real electric bus

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning

    GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

    Full text link
    Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multi-grid technique is also employed. Results: It is found that 20~40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 sec on a NVIDIA Tesla C1060 GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that our algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mAs/projection. Comparing with currently widely used full-fan head and neck scanning protocol of ~360 projections with 0.4 mAs/projection, it is estimated that an overall 36~72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.Comment: Accepted as a letter in Med. Phys., brief clarifying comments and updated references. 6 pages and 2 figure

    Territoriality, motivational climate, and idea implementation: We reap what we sow

    Full text link
    © 2017 Scientific Journal Publishers Limited. All Rights Reserved. Drawing on the integrated perspectives of territoriality and motivational climate, we explored the relationship between employees’ territoriality and idea implementation. We tested our model with 46 research and development teams in China, comprising 359 employees and their supervisors, who completed measures of territoriality, social alienation, motivational climate (specifically, performance climate and mastery climate), and idea implementation. The results showed that social alienation mediated the relationship between territoriality and idea implementation, and that mastery climate and performance climate moderated the positive relationship between territoriality and social alienation. Our findings not only provide insight into the relationship between territoriality and idea implementation, but also clarify the effect of motivational climate on this relationship. Implications for practice and future research are discussed

    GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    Full text link
    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512\times512\times70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstrct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of modulation-transfer-function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.Comment: 24 pages, 8 figures, accepted by Phys. Med. Bio
    • …
    corecore