427 research outputs found

    Realizing Caustics in Acoustic Fields

    Get PDF
    We present a method to realise a wide class of caustics in acoustic fields created by a set of phase holograms realized with metasurfaces. Given the desired caustic shape, we discuss how to identify the phase distribution along the metasurfaces and describe the calculations needed for determining the pressure field in the vicinity of the caustic. The results of this work can be used in realising acoustic traps controllable with acoustic metamaterials

    Laser vibrometry characterisation of a microfluidic lab-on-a-chip device: a preliminary investigation

    Get PDF
    Since their original inception as ultrasound contrast agents, potential applications of microbubbles have evolved to encompass molecular imaging and targeted drug delivery. As these areas develop, so does the need to understand the mechanisms behind the interaction of microbubbles both with biological tissue and with other microbubbles. There is therefore a metrological requirement to develop a controlled environment in which to study these processes. Presented here is the design and characterisation of such a system, which consists of a microfluidic chip, specifically developed for manipulating microbubbles using both optical and acoustic trapping. A laser vibrometer is used to observe the coupling of acoustic energy into the chip from a piezoelectric transducer bonded to the surface. Measurement of the velocity of surface waves on the chip is investigated as a potential method for inferring the nature of the acoustic fields excited within the liquid medium of the device. Comparison of measured surface wavelengths with wave types suggests the observation of anti-symmetric Lamb or Love-Kirchhoff waves. Further visual confirmation of the acoustic fields through bubble aggregation highlights differences between the model and experimental results in predicting the position of acoustic pressure nodes in relation to excitation frequency

    Un-biodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications

    Get PDF
    Nowadays, microplastics represent emergent pollutants in terrestrial ecosystems that exert impacts on soil properties, affecting key soil ecological functions. In agroecosystems, plastic mulching is one of the main sources of plastic residues in soils. The present research aimed to evaluate the effects of two types of plastic sheets (un-biodegradable and biodegradable) on soil abiotic (pH, water content, concentrations of organic and total carbon, and total nitrogen) and biotic (respiration, and activities of hydrolase, dehydrogenase, β-glucosidase and urease) properties, and on phytotoxicity (germination index of Sorghum saccharatum L. and Lepidium sativum L.). Results revealed that soil properties were mostly affected by exposure time to plastics rather than the kind (un-biodegradable and biodegradable) of plastics. After six months since mesocosm setting up, the presence of un-biodegradable plastic sheets significantly decreased soil pH, respiration and dehydrogenase activity and increased total and organic carbon concentrations, and toxicity highlighted by S. saccharatum L. Instead, the presence of biodegradable plastic sheets significantly decreased dehydrogenase activity and increased organic carbon concentrations. An overall temporal improvement of the investigated properties in soils covered by biodegradable plastic sheets occurred

    Plant cover and management practices as drivers of soil quality

    Get PDF
    Human activities intensively modify soil properties and quality according to land-use and management practices. In Mediterranean areas, pollution and fires may directly alter some soil abiotic properties as well as the steady-state condition of soil microbiota. The aim of this study was to evaluate if the chemical and biological characteristics of two kinds of soil, Arenosols and Andosols, of a natural reserve and an urban park respectively, were affected by the same or different plant covers (trees and grasses). At each site, five sub-samples of surface soils (0–10 cm) were collected under maquis (trees) and gap of grasses. The soils were analyzed for physico-chemical parameters (organic matter and water contents, pH, C, N, Cr, Cu, Ni and Pb concentrations) and biological parameters (microbial and fungal biomass, respiration, metabolic quotient and coefficient of endogenous mineralization). The soil quality was evaluated through an integrated index, calculated taken into account all the investigated parameters. The results highlighted that soils under trees inside the urban park, with the highest amount of organic matter, showed higher microbial biomass and activity as compared to soils under grasses. The high concentration of Cu and Pb in these latter soils inhibited the microbial biomass and activity that were not exclusively affected by litter quality. Soil quality would seem to be strongly affected by the pedogenetic derivation and the management practices more than plant covers
    • …
    corecore