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The present study will deal with a practical problem of noise mapping: the acoustical classification of

roads in the medium size municipality of San Giuliano Terme, in Tuscany (I). At first, using a common

approach in literature, the main road infrastructures have been classified in three clusters, applying

threshold methods to traffic flow measurements. The time history of LAeq was then acquired in selected

sites over a continuous period of 24 hours and the power spectrum G(f) was then calculated from dB

values of LAeq over 15 minute intervals. A power law was fitted to G(f) in the range [0.02, 0.2] Hz,

obtaining two parameters - B(t) and A(t) - over a complete day. Hierarchical clustering was finally

performed and the clusters obtained resembled the ones based on traffic flow. The values of B(t) and A(t)

have been compared with other indicators: comparison with Number of Noise Event (NNE) and L10-L90

has been reported here. New fitting possibilities for G(f) has also been explored and discussed in this

work. Finally, statistical analysis has been used to get further information on the meaning of B.

1 Introduction 

The search for new indicators to distinguish

soundscapes is crucial for the noise control in existing

quiet areas, as prescribed by the 2002/49/EC END, and

for the drawing up of cost/effective action plans. In this

direction, some studies classify external environments

acquiring their “acoustical characteristic” and 

comparing it to people’s perceptions both in “quiet”

and “disturbed” areas. The final goal is to identify new

indicators which could help to design new areas and

improve existing ones, directing technical efforts to

achieve the “ideal characteristic” of the site, as defined

by the expected utilization.

In 1978, R. F. Voss & J. Clarke [1] studied long term

variation of loudness, for different kind of man-

produced music, in order to find a better way to

generate stochastic computer music. They compared

the loudness power spectrum of signals acquired

during 12 hours in three different radio channels

(classical, rock, news) with the ones due to a few 

classical masterpieces, finding that all these sources

shared an 1/f dynamical behaviour, where the

“frequency” f is not related to the signal emitted every

second, but to the occurrence of events in the time

history (i.e.: if the explored range were [0.002¸0.2] Hz, 

target events would occur in the time interval between

500 ms and 5s). Their observations suggested that

musical pieces where the frequency and duration of 

each note had been determined by 1/f noise sources

sounded “pleasing”, while those generated by 1/f 2

(Brownian noise) sources sounded too correlated

(“boring”, in other words). The modern theory of

stochastic chaos has linked 1/f power spectrums to

“self-organized criticality” [2]. As the latter description

covers a great number of environmental situations, it

was thought to study the long-term noise dynamics in

urban and rural scenarios, seeking in it a finite set of

indicators to characterize the site [3]; [4]. 

A previous study [5] described different soundscapes

with 13 parameters calculated from the long-term

dynamics of three different signals: LAeq(t), Zwicker

loudness and instantaneous pitch. After acquiring a 

noise signal in a definite site (15 min. duration during

daytime, in 1/3 octave bands), the power spectrum G(f)
of Zwicker’s loudness and pitch in the range [0.002¸ 5]

Hz was fitted in [5] with:

 (1)
BfAfG )(

Hierarchical clustering (H-C, in the following text)

based on “within-group linkage” was then performed

on the data, using Pearson’s correlation coefficient r as 

a distance, obtaining two large clusters that could be

characterized as “pleasing” and “predictable”.

In more recent works [6] [7], the correlation between

the clustering and the soundscape perception was

investigated, with particular interest in sites infected by

traffic noise. In particular, in [7] it was shown that a 

fair correlation exists between the perceived

soundscape (assessed by simple questionnaires) and 

clustering results, obtained using the values of B at 

fixed moments during the 24 hours. They also showed

that, for each site, the fitted values of B did not depend

directly on the corresponding LAeq, but that they gave 

complementary information, to be interpreted through

a deeper study. It was also seen that, when the traffic

was low or in night hours, the G(f) dependence in eq.

(1) failed to describe the acquired power spectrums

over the frequency range.

After dealing with a practical case, using H-C and

calculated values of B to classify the main roads in a 
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municipality, the present work will try to cast a deeper

glance into the physics of the problem. Values of B

will be compared with other indicators and G(f) will be

fitted with other functions, in order to get its full

behaviour (i.e.: over the complete frequency range).

The last part of this work uses heavy-tail distributions

to describe the output of the statistical analysis of

LAeq(t). A possible influence on B of the parameters

obtained with this approach will be shown. 

Figure 1: The municipality of San Giuliano Terme.

Spots indicate measurements sites, colors describe the

road class (green: 1; yellow: 2; red: 3)

2 Basic classification

Figure 1 presents the main roads that interest the

territory of San Giuliano Terme, a 30000 inhabitants

municipality near Pisa, in Tuscany (I). A classification

of the main roads is needed to harmonize the limits for

other activities (due to land planning and decided by

the municipality) with those specific for transport

infrastructures (which depend mainly on road geometry

and have been fixed on a national scale). In order to do

that, the usual approach is to assess the noise actually

present near the roads of interest to classify them [8]. 

The streets of San Giuliano were classified using traffic 

flow data, speed limits (as determined by traffic signs)

and road geometry as input data to the CETUR model

[9], [10]. Velocity measurements were performed in a

few critical situations, in order to check the input

information, showing that speed limits were overcome

by not more than 10 km/h. Traffic flows were taken

between 7:00 AM to 7:00 PM (15 minute interval) and

during springtime in two different campaigns: one in

1997 (promoted by San Giuliano municipality) and one

in 2002 (Pisa Provincial authority). When two 

measurements were taken at the same site in the two

campaigns, the most recent one has been used here.

Sites were discriminated using a threshold method: less

than 350 vehicles/hour (class 1), between 350 and

800  v/h (class 2), over 800 v/h (class 3). The number

of classes was decided according to Tuscany’s regional

guidelines (as a comparison, 4 classes were used in 

[8]). Calculation at 10 m gave a maximum emission

value of 63.5 dB(A) for class 1 and minimum value of

66.5 dB(A) for roads in class 3.

The final classification is graphically represented in 

Figure 1. Roads where the traffic data changed along

the path were divided in homogeneous stretches, as

calculated noise emission was different.

The validity of this classification was checked by

performing a comparison between the two campaigns

over the sites in common. A mean 30% increase of the

traffic over the considered period was found

(correlation coefficient R=0.84): even if 1997 data

were updated to 2002, then, the calculated emission

would be increased by nearly 1 dB and the proposed

classification would not change. A final check was

performed for the period 2002-2004 acquiring 1-hour

measurements close to rush hour, over a selection of 

sites. Even using the latter data, no change was

observed in the class assignment.

3 Hierarchical clustering

Comparison between the basic road classification,

described in section 2, and the land planning issued by

the municipality allowed to select the sites where to 

take sound pressure measurements, in order to check

the limits and quantify the actions to be taken. Noise

time histories were acquired over a 24-hour period (1

second step) using unassisted sound level meters on the

spot (4.0 ± 0.1 m height). The map in Figure 1

highlights the measurement sites, while Table 1 reports

the corresponding traffic data. 

After acquisition, every signal was partitioned in

intervals of 900 seconds and the power spectrum G(f)

was calculated for each of them, so that:

 (2))(ˆ)(ˆ)( * fLfLfG AeqAeq

where  is the Fourier transform of L)(ˆ fLAeq Aeq(t)

and  is its complex conjugate. Fourier

transforms were calculated using Matlab and 

digitalized using 800 output values for each interval

spectrum. This choice of parameters, optimized after a

few tests, gives for every interval a function G(f) with 

400 points in the range [0.00125, 0.5] Hz. 

)(*̂ fLAeq

A typical power function for a class 1 road can be

found in Figure 2. It must be stressed again that the

obtained “frequency” is not related to the signal

emitted every second, but to the time history of LAeq

over an interval of 900 seconds: a peak in the spectrum

evidences a repetitive event during this acquisition

time. As an example, a peak in the range 0.1 –0.2 Hz 

was observed sometimes, especially in “class 1”
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locations (Figure 2a): a close look at the time history 

showed that the time lag among peaks in the

background was between 5 and 10 seconds (perhaps

due to other traffic sources nearby). In the region

f < 0.02 Hz almost all power spectrums G(f) were flat. 

This phenomenon was probably due to numerical

fluctuations in the calculation of , because of 

the finiteness of the interval (very few points can be

found below 0.01 Hz).

)(ˆ fLAeq

A power function of the frequency as in eq. (1) was

finally fitted to G(f) in the range 0.02 - 0.2 Hz, using a 

least-squares method. The chosen frequency range was

slightly reduced respect to the one used in [6], in order

to exclude the peaks in G(f), when present, and the

region where the power spectrum is flat. 

Table 1: Some traffic data used in this work.

Vehicles/hour

Site
Mean Max. Heavy

%

Theor.

LAeq
Class

Asciano 740 1139 7 69.0 3

Orzignano 1044 1321 11 68.3 3

Pontasserchio 920 1234 12 67.4 3

Aurelia 1184 1384 22 71.6 3

Mezzana 936 1174 6 69.0 3

Gello_NEW 262 320 7 63.5 1

Puccini 605 833 10 67.3 3

Molina 323 496 9 63.8 2

San Giuliano 677 928 13 66.4 2

San Jacopo 691 939 4 67.6 3

Palanche 469 588 9 64.4 2

Sites with less than 2500 v/day: Agnano, Ghezzano,

Metato

Two time dependences for the fitting parameters were

obtained in this way: the exponent B(t) and the 

multiplying factor A(t). As an example, choosing 900 s 

intervals gave 96 points in a day with a calculated 

value of A and B for each. The error on the values of 

the fitting parameters was estimated as 10%. 

Figure 3 presents the calculated values of B for two

different sites. It can be seen that this parameter can 

change very much along a day and from site to site,

especially during the night. A detailed discussion on B

can be found in [7], where it was demonstrated that 

A(t) does not add information to the trend of LAeq(t).

Hierarchical clustering, based on “within-group

linkage”, was performed using the statistical toolbox of

Matlab and a distance defined as: 

 (3)),(1),( 21211 xxrxxd

where r(xi, yi) is the Pearson’s coefficient as in [6]. 

Figure 4 reports the clustering result, using the 96

values of B calculated over a day; this technique

divided the selected sites into two main groups 

(“noisy” and “quiet” ones).
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Figure 2: Calculated G(f) at a class 1 location during 

two 15 minutes intervals (starting at 3:45 AM and at 

4:00 PM). Averaged curves underline the trend.

It can also be seen that the obtained clusters resemble

the grouping based on traffic flow data, even if no

direct correlation was found between the calculated 

value of B and the corresponding number of passing

vehicles for a 900 s intervals.

Clustering by H-C also allocated class 2 roads in one of 

the two groups. If the link between H-C and perception

proposed in [7] were confirmed by a larger study, the 

clustering in Figure 4 would be more powerful than the

one obtained by thresholds. In fact, it would contain

both the information given by traffic flow data (not

explicitly needed in this section), and an indication on 

the way people perceive the local soundscape.
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Figure 3: Dependence of B(t) for two different sites. 
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Figure 4: Results of hierarchical clustering using all the 

96 values of B over a day.

4 Other indicators

If B(t) is well related to perception, it seems natural to 

correlate its value with the number of noise events

exceeding the “disturbance threshold” by a certain 

amount. A good parameter to be compared with B(t) is

then the Number of Noise Events (NNE), defined in the

literature as “the number of noise events exceeding an 

agreed constant limit by a certain amount”.

In this study, NNE will be defined as the number of 

events that, in a 15 minutes interval, overcome L90 by 

at least 10 dB(A). This quantity resembles the “number

of emergences” indicator, as proposed in [10]; the 

latter being “the number of times the LAeq (30s) exceeds

the L50 (10min) by more than 15 dB(A)” ( L99  is used 

as the reference level for school and hospitals, instead). 

The different choice of reference levels (L90 and 10 dB

overcome) has been optimized to maximize the trend in 

Figure 5, where results have been reported. The 

behavior of “noisy” (squares) and “quiet” (circles) sites 

could not be distinguished during daytime, when a

slight decrease of B corresponded to an increase in

NNE, so Figure 5 just reports the effect during night

hours, when it was possible to characterize two 

different types of time histories:

few events over a low background (circles);

a lot of events with the same energy, but almost

undistinguishable among them (squares).
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Figure 5: Comparison of B and NNE for locations in 

Table 1 in the period 00:00-5:45 AM. The sites have a

different LAeq(period).

The scattering in Figure 5 could be due to the fact that

not all the variables were monitored there: “quiet” and

“noisy” sites may have a very different distribution for

the measured short LAeq.

Trends very similar to the ones in Figure 5 were in fact

obtained using L10-L90 (15 min) as independent variable

(instead of NNE): the latter parameter might mask the

actual dependence between B and the observed

emergences. For this reason Matlab was used to 

generate artificial signals (24h duration), adding two

different sources:

a signal with well defined peaks (40 s duration) at

random positions over the 24 hours (S1);

a random signal S2 given by

),0(2
 dB(A) (4)gaussianbackgroundS

where gaussian(0, ) is a gaussian-distributed value

with 0 mean and   standard deviation. The total signal 

for each second is then given by a weighted sum:

21 1.0

21F

where C

 dB(A) (5)1.0
101010

SS
CCLogS

1 and C2  were adjusted before further

processing, in order to preserve the total energy (i.e.:

the LAeq over SF duration) and the difference L10-L90.
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These two parameters actually describe the distribution

of values for the short LAeq, so that then dependence of

B on it can be controlled. Figure 6 reports the

dependence of B on NNE for different values of

L10-L90, as calculated by the model: each series of data 

was obtained varying  in the range 0-4 dB(A). There

is an evident decrease of B with NNE when

L10-L90  14 dB(A), even if the uncertainty in the value 

of B at a fixed NNE is very large. The trend stays

almost flat, with B comprised between –2 and –3, when

higher peaks are present i.e.: for L10-L90  20 dB(A),
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Figure 6: Values of B and NNE calculated with the 

y,

when the number of emergences is high, while they 

nce.

ow frequencies or the decrease in slope for

d to

describe in the frequency domain a system whose 

correlation function C( ) decreases exponentially:

model for different values of L10-L90.

These observations lead to the conclusion that B is 

related to the number of “noisy” events mainly in the 

range 14 L10-L90  20 dB(A), when peaks are well 

defined over background noise, but not numerous.

When NNE > 10 the variation of B is in fact very weak, 

whatever the value of L10-L90  (i.e.: how much the 

peaks overcome the background noise). What has been

said also partially explains the trends shown in Figure

3: the two types of locations are similar during the da

differ at night. H-C probably detects this differe

5 Different models for G( f )

As previously stated, eq. (1) describes G(f) just in a 

limited range of frequencies: it cannot predict the flat 

behavior at l

f >0.2 Hz. For these reasons, new dependences are

needed.

It is well known, by the Wiener-Khinchin (W-K)

theorem, that the power spectrum is related to the

autocorrelation function via a Fourier transform.

Investigating the frequency dependence of G(f) is then 

a way to get information about the degree of

correlation between the events in the time history. As

an example, Lorentzian functions are usually use

aa
C

fa
fG exp

8
)(

41
)(

222
(6)

where   is the lag time used in calculating the 

autocorrelation and 1/  a is the half-height width of the

G(f). This is the typical behaviour for systems

characterized by independent, identically distributed 

random events, as in theoretical random traffic. In this

11

ould be the closer behaviour to a Lorentz

long-tailed

distributions come into play; for this reason a different

n.

hen

model, it can be shown that the number of events at a 

given time has a Poisson Probability Density Function. 

A Lorenz peak similar to the one in eq. (6) was tried as 

fitting function for G(f) in order to get the behavior for

f > 0.02 Hz. The position of the peak center was left

free to optimization. As an example, the best fit for the 

data in Figure 2b (B=-0.9) gives: center at 0.03 Hz and

half-height width equal to 0.048 Hz, but R2=0.052. As

similar low values of R2 were obtained when B = -2,

which sh

shaped G(f), the “zero-memory” Lorentzian model was 

rejected.

Next step was to consider long-tailed distributions.

These models come into play where rare events still

happen relatively commonly (e.g.: when isolated peaks

are present), from the variation of stock prices to the

internet traffic. As the measured short LAeq signals

seem to fall into the description above, long tailed

distributions should be used to get a further insight into

the physics behind the parameter B. The step from the

probabilistic model to the correlation function and to 

G(f) is generally non trivial when

approach will be proposed in next sectio

6 Statistical analysis

The problem of investigating the meaning of B will be 

approached here from another point of view. The first

step was to treat the measured short LAeq in each 

interval as a random variable, with a definite

probability distribution function (PDF). This function

can be seen producing a “smoothed” histogram,

depicting relative frequencies of the measured data.

Cumulative density function – CDF(x), giving the

probability to have a LAeq value lesser than x – is t

obtained from each experimental PDF. Figure 7 show a

few examples, corresponding to fixed values of B.

When the value of B gets closer to zero, the initial and 

final part of the corresponding “experimental” CDF
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grow in importance: they are related to the tails of 

PDF, which get less steep as peaks become more

numerous. In this sense, the shape of PDF (or CDF, as 

the effect is enhanced in it) might be related to the 

number of peaks and the way they stand over the

background, like NNE. The final step was to fit the 

o

to fi

btained trend known probability distributions, in order 

nd the best one to describe the phenomenon.
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Figure 7: Experimental CDFs relative to different

ken as fitting functions, as both

present a sigmoid CDF. The fitting session showed that 

e Logistic model:

values of B, as determined by the measured data.

Pareto and Logistic distributions (the latter being used

in place of the Gaussian distribution when longer tails 

are needed) were ta

th

1

exp1),,(
k

bmxCDF  (7)

was much better. Eq. (9) could in fact fit most of the 

experimental CDFs with 0.98 < R

xm

to how much peaks

s with “quiet” sites will 

s.

olic power dependence. Logistic’s main

parameter was well correlated to B, at least in “noisy”

sites.

2 < 0.99, while

R2 < 0.9 using Pareto, which has an hyperbolic power

behavior. The comparison between B and the Logistic

parameter (related to the slope) has been reported in 

Figure 8, for five different “noisy” sites: even with

some dispersion, a definite trend is shown. Figure 8 is 

then another way to say that, at least for ”disturbed”

sites, the value of B is related

modify the LAeq. The difference

be investigated in future studie

7 Conclusions 

Hierarchical clustering has been used to classify the

streets in the municipality of San Giuliano Terme using 

the different values of the parameter B, obtained from a

power fit on the noise dynamical spectrum over 24

hours. The parameter B was then compared with NNE,

showing that the two indicators do not give the same

information. Other fitting functions were then tested on

G(f), trying to relate B with “no-memory” and “highly 

correlated” distributions, in order to understand its 

meaning. A statistical approach to the dynamic was 

finally proposed, showing that a Logistic exponential

model fits measured CDFs better than a Pareto

hyperb
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Figure 8: Logistic slope of CDF from eq. (9) vs. power

from eq. (1), for 5 fixed locations.
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