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A B S T R A C T

Human activities intensively modify soil properties and quality according to land-use and management practices.
In Mediterranean areas, pollution and fires may directly alter some soil abiotic properties as well as the steady-
state condition of soil microbiota. The aim of this study was to evaluate if the chemical and biological char-
acteristics of two kinds of soil, Arenosols and Andosols, of a natural reserve and an urban park respectively, were
affected by the same or different plant covers (trees and grasses). At each site, five sub-samples of surface soils
(0–10 cm) were collected under maquis (trees) and gap of grasses. The soils were analyzed for physico-chemical
parameters (organic matter and water contents, pH, C, N, Cr, Cu, Ni and Pb concentrations) and biological
parameters (microbial and fungal biomass, respiration, metabolic quotient and coefficient of endogenous mi-
neralization). The soil quality was evaluated through an integrated index, calculated taken into account all the
investigated parameters. The results highlighted that soils under trees inside the urban park, with the highest
amount of organic matter, showed higher microbial biomass and activity as compared to soils under grasses. The
high concentration of Cu and Pb in these latter soils inhibited the microbial biomass and activity that were not
exclusively affected by litter quality. Soil quality would seem to be strongly affected by the pedogenetic deri-
vation and the management practices more than plant covers.

1. Introduction

Human activities introduce pollutants, such as heavy metals, to soils
through mining, smelting, industry, agriculture and burning fossil fuels,
leading to alterations of several processes that could weaken the whole
ecosystem (Pouyat et al., 2009), especially in urban and adjacent areas.
Also some disturbances, such as fire, erosion, drought and salinization,
have been identified as important threats to soil (Andrews and Carroll,
2001; Commission of the European Communities, 2002) because they
may directly alter some soil chemical and physical properties as well as
the steady-state condition of soil microbiota, important determinant of
carbon turnover (De Marco et al., 2005).

The Mediterranean-type ecosystems, where a lot of areas have been
affected by anthropic pressure for thousands of years, are, nowadays,
one of the most significantly altered hotspots in the world (Falcucci
et al., 2007). In fact, in these ecosystems, pollution and fires are widely
recognized as the main drivers of human impact. In particular, fire is by
far the most frequent and widespread cause of disturbance to vegeta-
tion, altering the structure of land cover and functioning of Medi-
terranean ecosystems (Dale et al., 2001). However, Mediterranean
maquis is highly adapted to frequent fires, shrub fuels are known for
their flammability and tendency to sustain high intensity fire
(Malkisnon et al., 2011). In heavily degraded Mediterranean region,

patches of high and low maquis with small clearings in the shrub cover
dominated by herbaceous species occur (Ruth et al., 2009). This mosaic
of vegetation contributes to the wide spatial variability of soil physical
and chemical properties. Plant species, according to their morphologies,
differently intercept air pollutants deriving by dry or wet deposition,
affecting their soil accumulation (Maisto et al., 2004). Thus, in turns,
determines consequences on soil biological diversity and processes
(Trabaud, 2002) modifying soil fertility and quality (Caravaca et al.,
2002). In fact, thus can cause changes in growth of the different com-
ponents (fungi and bacteria) of soil microflora (Vásquez et al., 1993;
Bååth et al., 1995; Díaz-Raviña et al., 2006) with consequences on ef-
ficiency in carbon assimilation and mineralization due to microbial
community (Rutigliano et al., 2007). In addition, soil characteristics
also depend on its proximity to lagoons and rivers that suffer both
natural and man-induced pollution. In particular, the lagoons are often
the recipient of domestic, agricultural and industrial discharges that
eventually result in soil heavy metal accumulation (Arienzo et al.,
2014).

Soil quality is often assigned to specific soil attributes (i.e., pH, soil
structure stability, organic matter content and nutrient supply), also if it
is a complex functional concept and cannot be measured directly in the
field or laboratory but can be indirectly inferred by soil indicators
(Cherubin et al., 2016). Soil indicators are measurable properties and
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describe processes that have the greatest sensitivity to changes in soil
functions and its ecosystem services (Andrews et al., 2004; Innangi
et al., 2015; Zornoza et al., 2015; Memoli et al., 2018). To assess soil
quality is essential to elaborate indices integrating the parameters that
are affected by different types of disturbance and that vary in frequency
and intensity in relation to human demography and management
(Barbero and Quèzel, 1989).

The aim of this study was to evaluate if, in Mediterranean region,
the chemical and biological characteristics of two kinds of soil,
Arenosols and Andosols, found in a natural reserve and an urban park,
respectively, were affected by the same or different plant covers (trees
and grasses). The quality of the soils was estimated through an in-
tegrated index, taking into account all the investigated parameters. In
this concern, the hypotheses were: soils under trees received a major
input of litter as compared to those under grasses (H1); pollutant de-
position was higher on soils under grasses (H2); microbial biomasses
and activities were enhanced by more degradable litter (H3); soil
quality of natural reserve was higher than that of urban park (H4). The
findings of the research can provide information both at local and
global scales, as they can be as useful tool in management plans and can
increase the current dataset of soils of Mediterranean area.

2. Materials and methods

2.1. Study area and sampling

The research was carried out in the Mediterranean Region in the
South of Italy characterized by dry summers and rainy autumns and
winters (mean annual temperature: 18 °C; annual precipitation:
800mm). In particular, it interested two sites: an urban park (UP) and a
natural reserve (NR).

The urban park with an extension of approximately 10 ha, estab-
lished in 1953 and abandoned until 1997, is located on a flat coastal
area of Campi Flegrei, Naples near the Fusaro Lagoon (40°49′N,
14°03′E). The urban park plant cover is similar to that of the reserve
including patches of high and low maquis with dominance of holm oak
specimens and low shrubs and herbaceous species in the gaps. Soils of
Phlegren volcanic region are Molli-Vitric Andosols with clay loam tex-
ture (di Gennaro, 2002 according to FAO classification, 1998). The
Fusaro Lagoon is a saltwater lagoon of relevant hydrological interest. It
has often been the object of attention for high levels of degradation and
the general state of neglect that, over the years, have caused serious
eutrophication phenomena (Carrada, 1973; Arienzo et al., 2014).

The natural reserve, established in 1977 and with an extension of
approximately 268 ha, is located at Castel Volturno (40°57′N, 13°33′E)
on a flat coastal area of Naples and is covered by a typical
Mediterranean maquis, consisting of densely sclerophyllous shrubs and
trees, including specimens of Quercus ilex L., Myrtus communis L.,
Arbutus unedo L., Pistacea lentiscus L., Phillyrea latifolia L. Locally, small
clearings (gaps), representing the 20% of the maquis area, in the woody
canopy were covered by grasses and bryophytes (De Marco et al.,
2008). The natural reserve has often been interested by prescribed
frequent fires that were used as useful tool in the management practices
(D’Ascoli et al., 2005).

Soil at the nature reserve is a Calcaric Arenosol with sandy loam
texture (di Gennaro, 2002 according to FAO classification, 1998).

At each site, five sub-sample of surface soils (0–10 cm) were col-
lected under maquis (trees) and gap of grasses.

2.2. Soil physico-chemical analyses

The soil samples were sieved (< 2mm) and divided in aliquots to
measure: water content (WC), pH, organic matter (OM) content, and C,
N, Cr, Cu, Ni and Pb concentrations. Soil water content was assayed
drying 5 g of each soil sample at 105 °C until to reach a constant weight.
According to USDA-NRCS (2017), pH was measured on soil: distilled

water (1:2.5= v:v) suspension by potentiometric method. In order to
calculate OM content, the organic carbon (Corg) was determined by gas-
chromatography (Thermo Finnigan, CNS Analyzer) on soil samples
previously treated with HCl (10%) to exclude carbonates. Successively,
the OM content was obtained multiplying the Corg for 1.724 (Pribyl,
2010). Total C and N concentrations were evaluated on oven-dried
(105 °C, until constant weight) and grounded (Fritsch Analysette
Spartan 3 Pulverisette 0) soil samples by gas-chromatography (Thermo
Finnigan, CNS Analyzer). Successively, C/N ratios were calculated.
Total concentrations of Cr, Cu, Ni and Pb were measured, via graphite
furnace, by atomic absorption spectrometry (SpectrAA 20 – Varian) on
oven-dried (105 °C until constant weight) and grounded (Fritsch Ana-
lysette Spartan 3 Pulverisette 0) soil samples dissolved by an acid
mixture (HF 50% and HNO3 65% at 1:2= v: v) in a micro-wave oven
(Milestone mls 1200 – Microwave Laboratory Systems).

All the described analyses were performed in triplicates.

2.3. Soil biological analyses

Microbial and fungal biomass as well as microbial respiration were
measured on fresh soils stored at 4 °C until time of measurements
(within a week after sampling). Microbial biomass carbon (Cmic) was
evaluated by the method of substrate-induced respiration (SIR) ac-
cording to Degens et al. (2001), while microbial potential respiration
(Resp) according to Froment (1972). The CO2 evolution from the
samples at 55% of water holding capacity was measured by NaOH
absorption followed by two-phase titration with HCl (Froment, 1972),
after incubation at 25 °C in tight containers for 5 and 10 days, respec-
tively, to evaluate Cmic and Resp. Total fungal biomass (FB) was assayed
by membrane filter technique (Sundman and Sivela, 1978), after
staining with aniline blue, determining hypha length by intersection
method (Olson, 1950) with an optical microscope (Optika, B-252). In
order to make comparable the soil samples collected at different sites,
all data were expressed per unit of soil dry weight. The results obtained
by the biological analyses were used to calculate two indices: the me-
tabolic quotient (qCO2), i.e. the degree of microbial biomass activity,
and the coefficient of endogenous mineralization (CEM), i.e. the rate of
organic carbon mineralization (Anderson and Domsch, 1993). The
qCO2 was calculated as ratio between Resp and Cmic, whereas the CEM
was calculated as ratio between Resp and Corg.

2.4. Soil quality index (SQI)

In order to evaluate the soil quality, an integrated index was cal-
culated taken into account all the investigated parameters that were
ranked by linear scoring technique according to Liebig et al. (2001).
The scores, ranging from 0 to 1, were assigned applying the more is
better or less is better functions. The more is better function was applied to
WC, OM, C and N contents, Cmic, FB, Resp and CEM; whereas, the less is
better function was applied to qCO2 and metal concentrations (Marzaioli
et al., 2010). The maximum score for pH was attributed to 7 (Liebig
et al., 2001). The SQI was calculated by summing the parameter scores
and dividing for the number of parameters according to Andrews et al.,

Table 1
pH and water content – Mean values (± s.e.) of pH and water content (WC,
expressed as % d.w.) in soils collected at the urban park and the natural reserve
under different vegetation covers (maquis and gap of grasses). In bold the
maximum and minimum values are reported. Different letters indicate the
statistically significant differences (one way ANOVA, P < 0.05).

Site typology Vegetation cover pH WC

Urban Park Maquis 7.22 ± 0.04A 60.34 ± 1.73A

Gap 6.67 ± 0.04B 38.44 ± 0.75B

Natural Reserve Maquis 7.51 ± 0.03A 16.19 ± 0.22A

Gap 7.47 ± 0.02A 15.11 ± 0.23A
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2003. Among the different indices useful for soil quality assessment
(Masto et al., 2008; Gonzàlez-Quiñones et al., 2007) that proposed by
Andrews et al. (2003) is commonly used in literature (Marzaioli et al.,
2010; Askari and Holden, 2015) as it is easy to calculate, takes into
account chemical, physical and biological parameters and provides
information about the effects of management practices on soil functions
(Andrews et al., 2004).

∑=
=

SQI iS
ni

n

1

where SQI is soil quality index, S is the score assigned to each studied
parameter and n is the number of the studied parameters.

2.5. Statistical analyses

The normality of the data distribution was assessed by the Shapiro-
Wilk test.

Spearman’s correlation test was performed to evaluate the re-
lationships between physical-chemical and biological characteristics
either at two sites sampled either under different vegetation cover (i.e.
trees and grasses).

The one-way analysis of variance (ANOVA), followed by the Holm-
Sidak post hoc test, was performed in order to highlight differences
among the four soils (factors for ANOVA were soil typologies and plant
covers). The paired t-test was performed to evaluate the significance of
differences between soil typologies and between plant covers.

All parameters were used in the standardized principal component

analysis, PCA, in order to find the main factors affecting the soil quality.
The univariate statistical tests, performed by Systat_SigmaPlot_12.2

software (Jandel Scientific, USA), were considered statistically sig-
nificant for P < 0.05. The PCA was performed by package Syn-tax
2000 (Podani, 1993).

3. Results

3.1. Soil characteristics and soil quality index (SQI)

3.1.1. Comparison among the soils
The soil pH varied between neutral to slightly alkaline with values

statistically lower for the soil of the gaps of grasses and higher for the
soil under maquis of the natural reserve (Table 1). Soil water (WC) and
organic matter (OM) contents were statistically higher in the soil under
maquis of the urban park, whereas they were statistically lower in the
soils under both the plant covers of the natural reserve (Table 1;
Fig. 1A). The OM content in the soil under gap of grasses of the urban
park did not statistically differ from the soils under the two plant covers
of the natural reserve (Fig. 1A). C/N ratio showed high variability
among the soils; instead N content was statistically higher in the soil
under maquis of the urban park, and lower in the soils under gaps of
grasses of both the sites typologies (Fig. 1A).

Also the heavy metal (Cr, Cu, Ni and Pb) concentrations highlighted
wide variability among the soils (Fig. 2A). The highest Cr concentra-
tions were observed in both the soils of the natural reserve (Fig. 2A). Cu
and Pb showed the similar spatial trends with the highest concentra-
tions in soil of gap of grasses inside the urban park, whereas the lowest

Fig. 1. Chemical characteristics of investigated soils – Mean values (± s. d.) of organic matter (OM), N contents and C/N ratios in soils of: A) different plant covers
inside each site typologies and B) different site typologies and plant covers. Different letters indicate the statistically (One-way ANOVA) significant differences among
four soils (MUP, GUP, MNR, GUP). The asterisks indicate the statistically significant differences between site typologies and between plant covers (Paired t-test).
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concentrations were measured in soil under both the plant covers inside
the natural reserve (Fig. 2A).

The investigated biological parameters highlighted that the highest
fungal biomass (FB) were in both the soils inside the natural reserve
(Fig. 3A), the highest microbial C (Cmic) in soils under maquis of the
urban park (Fig. 3A), the biological activities (Resp, qCO2, CEM) were
statistically higher in soils under gap of grasses of the natural reserve
(Fig. 4A). In addition, the biological activities showed similar spatial
trends among the soils (Fig. 4A).

The SQIs slightly differed among the soils with not statistically
significant differences (Fig. 5A).

3.1.2. Differences between Andosols and Arenosols (urban park and
natural reserve)

The comparison between Andosols and Arenosols highlighted sta-
tistically higher mean values of OM content, C/N ratio and N con-
centration in the former (Fig. 1B). Also the heavy metal (Cr, Cu, Ni and
Pb) concentrations differed between the soil types (Fig. 2B) with the

statistically higher values of Cr in the Arenosols, UP, whereas opposite
trends were observed for Cu, Ni and Pb that were statistically higher in
the Andosols, NR (Fig. 2B). Differently by Cmic, FB and the microbial
activity, measured by Resp, qCO2 and CEM, were statistically higher in
the Arenosols (Figs. 3B and 4B). The SQIs, with values ranging from
0.51 to 0.71 (Fig. 5B), was statistically higher in Andosols (UP) than in
the Arenosols (NR).

3.1.3. Differences between plant covers (maquis and gap of grasses)
An overall evaluation highlighted that all the soil physico-chemical

characteristics statistically differ between the two plant covers (maquis
and gap of grasses), with higher values of pH, WC, OM, N and C/N in
soils under maquis (Table 1, Fig. 1B).

The concentrations of all heavy metals highlighted statistically dif-
ferences between plant covers with higher values of Cr and Pb in soils
under gap of grasses and higher values of Cu and Ni in soils under
maquis (Fig. 2B).

In addition, all the investigated biological parameters as well as

Fig. 2. Heavy metal content measured in investigated soils – Mean values (± s. d.) of Cr, Cu, Ni, Pb, in soils of: A) different plant covers inside each site typologies
and B) different site typologies and plant covers. Different letters indicate the statistically (One-way ANOVA) significant differences among four soils (MUP, GUP,
MNR, GUP). The asterisks indicate the statistically significant differences between site typologies and between plant covers (Paired t-test).
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Fig. 3. Microbial and fungal biomass of in-
vestigated soils – Mean values (± s. d.) of
microbial C (Cmic), fungal biomass (FB) in
soils of: A) different plant covers inside each
site typologies and B) different site typolo-
gies and plant covers. Different letters in-
dicate the statistically (One-way ANOVA)
significant differences among four soils
(MUP, GUP, MNR, GUP). The asterisks in-
dicate the statistically significant differences
between site typologies and between plant
covers (Paired t-test).

Fig. 4. Microbial activity of investigated soils – Mean values (± s. d.) of microbial respiration, metabolic quotient (qCO2) and coefficient of endogenous miner-
alization (CEM) in soils of: A) different plant covers inside each site typologies and B) different site typologies and plant covers. Different letters indicate the
statistically (One-way ANOVA) significant differences among four soils (MUP, GUP, MNR, GUP). The asterisks indicate the statistically significant differences
between site typologies and between plant covers (Paired t-test).)
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SQIs did not show statistically differences between maquis and gap soil
(Figs. 3B, 4B and 5B).

3.2. Relationships among soil chemical and biological characteristics

3.2.1. Principal component analysis
The first two axes of the principal component analysis accounted for

more than 99% of the total variance. The biplot showed a clear se-
paration of the soils in the PC space related to plant cover and site
typology (Fig. 6). In fact, the axis 1 discriminated for site typology with
urban park soils situated in the third and fourth quadrants and the
natural reserve soils in the first and second ones (Fig. 6). Instead, the
axis 2 discriminated for plant cover with gap soils situated in the second
and third quadrants and the maquis soils in the first and fourth ones
(Fig. 6).

Also the investigated soil characteristics clearly separated in the
quadrants (Fig. 6). In fact, pH, fungal biomass, biological activities and
Cr concentrations situated in the first quadrant, soil Cu and Pb con-
centrations in the third quadrant and all the others in the fourth one
(Fig. 6).

3.2.2. Correlations inside each site typology (urban park and natural
reserve)

In urban park, all the biological parameters were positively corre-
lated to soil pH and N content (Table 2). In addition, the microbial
biomass was also positively correlated to soil organic matter content
(Table 2).

In natural reserve, soil respiration, qCO2 and CEM were negatively
correlated to Cu and Ni concentrations and water content (Table 2). In
addition, qCO2 was also negatively correlated to N and Cr contents, and
C/N as well as respiration and CEM were negatively correlated to or-
ganic matter content (Table 2).

3.2.3. Correlations inside each plant cover (maquis and gap)
In soils under maquis, all the biological parameters were positively

correlated to soil pH with the exception of Cmic and CEM that were
negatively correlated to it (Table 2). Soil respiration and qCO2 were
negatively correlated to water content (Table 2), and, as the fungal
biomass, they were also negatively correlated to OM content (Table 2).
In addition, the fungal biomass and qCO2 were negatively correlated to
N content (Table 2). Numerous statistically significant correlations
were found between microbial biomass and respiration to soil metal
concentrations (Table 2).

In gap soils, respiration, qCO2 and CEM were negatively correlated
to water content and Cu concentrations (Table 2) and positively to
organic matter; soil respiration was also positively correlated to Cr
concentrations (Table 2); in addition fungal biomass was negatively
correlated to N content (Table 2).

4. Discussion

The wide ranges of values observed for the investigated parameters
suggest high heterogeneity of the soils that integrate both the pedoge-
netic weathering and the different plant covers. Anyway, the manage-
ment practices would seem to play an important role in regulating soil
characteristics inside the same soil typology, especially at the urban
park. In fact, the PCA separated the soils under maquis and gap of
grasses for the urban park but not for the natural reserve. The separa-
tion of the soils in three groups could depend on the fact that each one
is mainly affected by certain soil characteristics. In fact, the gap soils
inside the urban site would seem to be strongly affected by high Cu and
Pb concentrations. These metals are widely recognized as markers of
vehicular traffic emissions (De Silva et al., 2016) that are typical of the
urban environment. Their statistically higher values in gap soils at the
urban park could be due to the direct air dry or wet depositions that
reach these soils (Maisto et al., 2004). In fact, soils covered by plants
receive a minor amount of air particulate that is mainly intercepted by
canopies (Petroff et al., 2008). The mean value of Pb (110 µg g−1 d.w)
in soils collected in gaps of the urban park, exceeding the threshold
value reported by the Italian Law for urban soils (D. Lgs 152/2006),

Fig. 5. Soil quality index of investigated
soils – Mean values (± s. d.) of the soil
quality index (SQI) calculated taking into
account all the 15 soil parameters in soils of:
A) different plant covers inside each site
typologies and B) different site typologies
and plant covers. Different letters indicate
the statistically (One-way ANOVA) sig-
nificant differences among four soils (MUP,
GUP, MNR, GUP). The asterisks indicate the
statistically significant differences between
site typologies and between plant covers
(Paired t-test).

Fig. 6. Results of Principal Component Analysis – Biplot of the all investigated
parameters :water content (WC), pH, organic matter (OM), N, C/N, Cr, Cu, Ni,
Pb, microbial C (Cmic), fungal biomass (FB), microbial respiration (Resp),
metabolic quotient (qCO2), coefficient of endogenous mineralization (CEM) in
the soils collected at the urban park (UP) and the natural reserve (NR) under
different vegetation cover (maquis, M and gap, G).
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supports the hypothesis that this element polluted those soils. Anyway,
it cannot be excluded input of Cu and Pb in gap soils of the urban park
deriving by the Fusaro Lagoon. These inputs cannot reach the soils
covered by maquis that instead are located at the opposite size. The
Lagoon has been the recipient of domestic, agricultural and industrial
discharges, that have metal polluted, over the time (from 1960 to
1990), the Lagoon and, in turn, the soils (Gimeno-García et al., 1996).
In particular, a monitoring campaign carried out in 2000 highlighted
that Pb content in the water of the Lagoon exceeded the threshold value
fixed by the law (De Pippo et al., 2004). The higher mean values of Cu
and Pb content in soils at the urban park would not seem to negatively
affect the amount of microbial biomass, likely due to the high amount
of organic matter that, limiting metal bioavailability by adsorption or
formation of stable complexes with humic substances, can mitigate the
contamination degree (Liu et al., 2009). Besides, likely the scarce Cu
and Pb availability can also be due to the alkaline pH values of these
soils (Salvagio Manta et al., 2002). Finally, Cu and Pb could be present
in insoluble forms not dangerous for microbial community (Wuana and
Okieimen, 2011; Morselli et al., 2003) or tolerance mechanisms can
have been developed by the microbial community (Giller et al., 1998).
On the whole, the microbial biomass of soils covered by maquis in the
urban park would seem to be enhanced by high organic matter and
water contents, as widely reported (Liu et al., 2016; González-Quiñones
et al., 2009; Carter, 2002). Instead, the soils of the natural reserve were
characterized by high amount of Cr that was also higher in the soils
covered by maquis than in gaps. In these soils, the fungal biomass was
abundant, likely favoured by pH conditions and by the presence of
complex organic matter. Previous studies performed on soils of the
investigated natural reserve report high spontaneous or prescribed fire
frequency at different intensities (De Marco et al., 2005; D’Ascoli et al.,
2005; Fierro et al., 2007; Rutigliano et al., 2007) that could cause a
decrease of abundance of soil microorganisms. On the other hand, the
increase in qCO2 and CEM could indicate a reduced microbial efficiency
in the C resource utilisation (Wardle and Ghani 1995; Bauhus et al.,
1998). This result also explains the numerous found negative correla-
tions between microbial activity and metal contents, in the soils of the
natural reserve. Other effect of fires was the statistically lower organic
matter and N contents in soils of the natural reserve than the urban park

to prevent the accumulation of large amount of litter on the surface soil
(Gregorich et al., 1998).

Anyway, beyond the management practices also the pedogenetic
derivation played an important role in affecting the soil biological
characteristics. In fact, on the whole, in the Arenosols of the natural
reserve higher fungal biomass and microbial activity, measured by re-
spiration, qCO2 and CEM (stress indicators), but lower microbial bio-
mass were observed as compared to the Andosols of the urban park. The
Arenosols had a sandy loam texture causing a scarce water availability
that negatively affected the bacterial biomass and microbial activities.
This hypothesis can be corroborated by the higher fungal biomass that
are recognized as more stress tolerant (Rutigliano et al., 2007).

In the investigated sites, the quantity and quality of soil organic
matter appear to play an important role on microbial biomass and ac-
tivity. The results agree with De Marco et al. (2008) who report that
grasses are more decomposable than shrub leaves as the organic matter
of gap soils, exhibiting higher mineralization coefficients, would seem
to be less stable than maquis soil. A comparative study about the sta-
bility of organic carbon pools in several Mediterranean soils highlighted
higher values for gap soils (Rutigliano et al., 2004). Also, the lower
values of C/N in gap soils, likely due to the presence of herbaceous
species, support the previous hypothesis; in fact, short-lived annual
plant have rapidly degradable species, whereas the organic matter
content in the holm oak ecotypes are less labile and have lower quality
and then slow mineralization (Romanyá et al., 2001; Rodríguez et al.,
2017).

The synthetic approach deriving from the use of the SQI pointed out
that the pedogenetic derivation together with the management prac-
tices were the main drivers to define the soil quality.

5. Conclusions

The higher amount of organic matter observed on soils under ma-
quis inside the urban park enhanced the microbial biomass and activ-
ities as compared to those observed under gap. These differences did
not occur inside the natural reserve.

The metal accumulation on soil under gap was conspicuous only for
the urban park, where the high concentration of Cu and Pb inhibited

Table 2
Spearman’s correlation – Coefficient of Spearman’s correlation performed between physico-chemical and biological parameters of soils collected at the urban park
and the natural reserve under different vegetation covers (maquis and gap). The values that indicate statistically significant correlations are reported in bold.

pH WC OM N C/N Cr Cu Ni Pb

Urban Park
FB 0.878 0.771 0.600 0.829 0.600 0.657 −0.714 0.600 −0.657
Cmic 0.878 0.657 0.886 0.943 0.714 0.771 −0.771 0.829 −0.771
Resp 0.878 0.543 0.829 0.943 0.829 0.771 −0.600 0.714 −0.771
qCO2 0.891 0.667 0.725 0.986 0.725 0.638 −0.754 0.754 −0.638
CEM 0.891 0.667 0.725 0.986 0.725 0.638 −0.754 0.754 −0.638

Natural Reserve
FB 0.439 0.667 −0.0952 0.0476 0.405 0.429 0.667 0.143 0.333
Cmic −0.171 0.476 0.405 0.500 0.452 0.452 0.0476 0.643 0.357
Resp −0.415 −0.905 −0.714 −0.667 −0.595 0.762 −0.905 −0.714 −0.571
qCO2 −0.195 −0.786 −0.643 −0.762 −0.762 −0.786 −0.786 −0.881 −0.643
CEM −0.415 −0.905 −0.714 −0.667 −0.595 −0.762 −0.905 −0.714 −0.571

Maquis
FB 0.927 −0.679 −0.786 −0.857 −0.536 0.857 −0.536 −0.786 −0.714
Cmic −0.852 0.643 0.714 0.821 0.500 −0.643 0.714 0.821 0.786
Resp 0.741 −0.964 −0.929 −0.607 −0.393 0.750 −0.821 −0.821 −0.571
qCO2 0.927 −0.786 −0.821 −0.750 −0.750 0.714 −0.643 −0.964 −0.679
CEM −0.259 −0.107 −0.107 0.429 0.000 −0.143 0.107 0.143 0.607

Gap
FB 0.599 −0.429 0.429 −0.750 0.607 0.357 −0.607 0.393 −0.571
Cmic 0.0187 −0.286 0.286 0.393 0.035 0.107 −0.286 0.250 0.143
Resp 0.617 −0.893 0.893 −0.643 −0.500 0.750 −0.786 0.643 −0.643
qCO2 0.623 −0.829 0.829 −0.631 −0.577 0.667 −0.883 0.667 −0.559
CEM 0.623 −0.829 0.829 −0.631 −0.577 0.667 −0.883 0.667 −0.559
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the microbial biomass and activity that were not exclusively affected by
litter quality. Finally, soil quality would seem strongly to be affected by
the pedogenetic derivation together with the management practices
more than plant covers.
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