21 research outputs found

    Indigenous family violence : an attempt to understand the problems and inform appropriate and effective responses to criminal justice system intervention

    Get PDF
    Whilst high levels of concern about the prevalence of family violence within Indigenous communities have long been expressed, progress in the development of evidence-based intervention programs for known perpetrators has been slow. This review of the literature aims to provide a resource for practitioners who work in this area, and a framework from within which culturally specific violence prevention programs can be developed and delivered. It is suggested that effective responses to Indigenous family violence need to be informed by culturally informed models of violence, and that significant work is needed to develop interventions that successfully manage the risk of perpetrators of family violence committing further offences.<br /

    Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells

    Get PDF
    The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR

    Propagule Pressure: A Null Model for Biological Invasions

    Full text link
    null model, propagule pressure Invasion ecology has been criticised for its lack of general principles. To explore this criticism, we con-ducted a meta-analysis that examined characteristics of invasiveness (i.e. the ability of species to establish in, spread to, or become abundant in novel communities) and invasibility (i.e. the susceptibility of habitats to the establishment or proliferation of invaders). There were few consistencies among invasiveness char-acteristics (3 of 13): established and abundant invaders generally occupy similar habitats as native species, while abundant species tend to be less affected by enemies; germination success and reproductive output were significantly positively associated with invasiveness when results from both stages (establishment/ spread and abundance/impact) were combined. Two of six invasibility characteristics were also significant: communities experiencing more disturbance and with higher resource availability sustained greater establishment and proliferation of invaders. We also found that even though ‘propagule pressure ’ was considered in only 29 % of studies, it was a significant predictor of both invasiveness and invasibility (55 of 64 total cases). Given that nonindigenous species are likely introduced non-randomly, we contend that ‘propagule biases ’ may confound current paradigms in invasion ecology. Examples of patterns that could be confounded by propagule biases include characteristics of good invaders and susceptible habitats, release from enemies, evolution of ‘invasiveness’, and invasional meltdown. We conclude that propagule pressure should serve as the basis of a null model for studies of biological invasions when inferring process from patterns of invasion

    Are invasives bigger? A global study of seed size variation in two invasive shrubs

    Get PDF
    We explored the spatial structure of seed size variation and tested whether seed size differed between native and exotic populations in two invasive species. Seed of Cytisus scoparius (Scotch broom) is significantly heavier in its exotic range, whereas seed of Ulex europaeus (European gorse) is no different between ranges. This result suggests that seed size in C. scoparius is either adaptively or phenotypically responsive to conditions in its exotic range or that plants with large seeds were preferentially introduced. We found that modern ornamental broom seed was no bigger than seed from natural or naturalized populations, suggesting that large seed size in the exotic range is not due to preferential introduction of ornamental varieties with large seeds. Most previous studies of trait differences between native and exotic ranges in invasive species have not taken variation throughout the ranges into account. This is the most comprehensive survey of seed size variation in any species, and the first time that variation in a trait of an invasive species has been studied from individual plant level up to global ranges. Demographic rates can be affected by seed attributes making this study an important first step in understanding how population processes may differ between native and exotic ranges

    Effects of self-compatibility on the distribution range of invasive European plants in North America

    Get PDF
    Many plant species have been introduced to new continents, but only a small subset of these have become invasive. It has been predicted that self-compatible species, particularly those that do not need the services of pollinators, are more likely to establish and spread after long-distance dispersal. We tested whether this hypothesis, commonly called Baker’s law, applies to 361 species that have invaded the United States from Europe. Species capable of autonomous seed production occurred in significantly more states than species requiring a pollen vector. Moreover, of the species that are not capable of autonomous seed production, selfcompatible species occurred in significantly more states than those that are not self-compatible. The positive effect of autonomous seed production on the range of invasion was larger for abiotically pollinated species than for biotically pollinated species and for monocarpic species than for polycarpic species. These results support Baker’s law, and we recommend that screening protocols for predicting invasiveness of species considered for introduction should include assessment of their breeding system
    corecore