103 research outputs found

    Fly Photoreceptors Encode Phase Congruency

    Get PDF
    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli

    A Glial Variant of the Vesicular Monoamine Transporter Is Required To Store Histamine in the Drosophila Visual System

    Get PDF
    Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems

    De Novo Analysis of Transcriptome Dynamics in the Migratory Locust during the Development of Phase Traits

    Get PDF
    Locusts exhibit remarkable density-dependent phenotype (phase) changes from the solitary to the gregarious, making them one of the most destructive agricultural pests. This phenotype polyphenism arises from a single genome and diverse transcriptomes in different conditions. Here we report a de novo transcriptome for the migratory locust and a comprehensive, representative core gene set. We carried out assembly of 21.5 Gb Illumina reads, generated 72,977 transcripts with N50 2,275 bp and identified 11,490 locust protein-coding genes. Comparative genomics analysis with eight other sequenced insects was carried out to indentify the genomic divergence between hemimetabolous and holometabolous insects for the first time and 18 genes relevant to development was found. We further utilized the quantitative feature of RNA-seq to measure and compare gene expression among libraries. We first discovered how divergence in gene expression between two phases progresses as locusts develop and identified 242 transcripts as candidates for phase marker genes. Together with the detailed analysis of deep sequencing data of the 4th instar, we discovered a phase-dependent divergence of biological investment in the molecular level. Solitary locusts have higher activity in biosynthetic pathways while gregarious locusts show higher activity in environmental interaction, in which genes and pathways associated with regulation of neurotransmitter activities, such as neurotransmitter receptors, synthetase, transporters, and GPCR signaling pathways, are strongly involved. Our study, as the largest de novo transcriptome to date, with optimization of sequencing and assembly strategy, can further facilitate the application of de novo transcriptome. The locust transcriptome enriches genetic resources for hemimetabolous insects and our understanding of the origin of insect metamorphosis. Most importantly, we identified genes and pathways that might be involved in locust development and phase change, and may thus benefit pest management

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link

    PIC-MC simulation of magnetron discharges: Ion energy distribution and 3D effects

    No full text
    Although magnetron sputtering has been established in the 80´s, the dynamics of magnetron discharge plasmas and subsequent reactive deposition processes are still not fully understood and involve surprising phenomena of collective many-particle dynamics. With a Particle-in-Cell Monte-Carlo (PIC-MC) simulation tool based on solving the Boltzmann equation with parallel algorithms, magnetron discharges can be analyzed in detail within 2D or 3D models. Thereby, 3D features such as non-symmetric anode effects or travelling plasma waves and their impact on the resulting ion energy distribution functions are revealed. The improved understanding of magnetron discharges obtained by PIC-MC plasma simulation helps to systematically improve the design of magnetron coaters in terms of homogeneity and stability

    The effects of threat on task-switching in anxiety: evidence from eye-movements during an antisaccade task

    No full text
    According to the attentional control theory of anxiety (Eysenck, Derakshan, Santos, & Calvo, 2007), anxiety impairs performance on cognitive tasks that involve the shifting function of working memory. This hypothesis was tested using a mixed antisaccade paradigm, in which participants performed single-task and mixed-task versions of the paradigm. The single task involved the completion of separate blocks of anti- and prosaccade trials, whereas in the mixed task, participants completed anti- and prosaccade trials in a random order within blocks. Analysis of switch costs showed that high-anxious individuals did not exhibit the commonly reported paradoxical improvement in saccade latency, whereas low-anxious individuals did. The findings are discussed within the framework of attentional control theory

    Semi-automatic artifact quantification in thermal ablation probe and algorithms for the evaluation of metal artifact reduction

    No full text
    AbstractObjectives To compare metal artifacts and evaluation of metal artifact reduction algorithms during probe positioning in computed tomography (CT)-guided microwave ablation (MWA), cryoablation (CRYO), and radiofrequency ablation (RFA).Materials and methods Using CT guidance, individual MWA, CRYO, and RFA ablation probes were placed into the livers of 15 pigs. CT imaging was then performed to determine the probe’s position within the test subject’s liver. Filtered back projection (B30f) and iterative reconstructions (I30-1) were both used with and without dedicated iterative metal artifact reduction (iMAR) to generate images from the initial data sets. Semi-automatic segmentation-based quantitative evaluation was conducted to estimate artifact percentage within the liver, while qualitative evaluation of metal artifact extent and overall image quality was performed by two observers using a 5-point Likert scale: 1-none, 2-mild, 3-moderate, 4-severe, 5-non-diagnostic.Results Among MWA, RFA, and CRYO, compared with non-iMAR in B30f reconstruction, the largest extent of artifact volume percentages were observed for CRYO (11.5–17.9%), followed by MWA (4.7–6.6%) and lastly in RFA (5.5–6.2%). iMAR significantly reduces metal artifacts for CRYO and MWA quantitatively (p = 0.0020; p = 0.0036, respectively) and qualitatively (p = 0.0001, p = 0.0005), but not for RFA. No significant reduction in metal artifact percentage was seen after applying iterative reconstructions (p > 0.05). Noise, contrast-to-noise-ratio, or overall image quality did not differ between probe types, irrespective of the application of iterative reconstruction and iMAR.Conclusion A dedicated metal artifact algorithm may decrease metal artifacts and improves image quality significantly for MWA and CRYO probes. Their application alongside with dedicated metal artifact algorithm should be considered during CT-guided positioning
    corecore