10 research outputs found

    Edge and modular significance assessment in individual-specific networks.

    Full text link
    peer reviewedIndividual-specific networks, defined as networks of nodes and connecting edges that are specific to an individual, are promising tools for precision medicine. When such networks are biological, interpretation of functional modules at an individual level becomes possible. An under-investigated problem is relevance or "significance" assessment of each individual-specific network. This paper proposes novel edge and module significance assessment procedures for weighted and unweighted individual-specific networks. Specifically, we propose a modular Cook's distance using a method that involves iterative modeling of one edge versus all the others within a module. Two procedures assessing changes between using all individuals and using all individuals but leaving one individual out (LOO) are proposed as well (LOO-ISN, MultiLOO-ISN), relying on empirically derived edges. We compare our proposals to competitors, including adaptions of OPTICS, kNN, and Spoutlier methods, by an extensive simulation study, templated on real-life scenarios for gene co-expression and microbial interaction networks. Results show the advantages of performing modular versus edge-wise significance assessments for individual-specific networks. Furthermore, modular Cook's distance is among the top performers across all considered simulation settings. Finally, the identification of outlying individuals regarding their individual-specific networks, is meaningful for precision medicine purposes, as confirmed by network analysis of microbiome abundance profiles

    netMUG: a novel network-guided multi-view clustering workflow for dissecting genetic and facial heterogeneity.

    Full text link
    [en] UNLABELLED: Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these classes. NetMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures. AUTHOR SUMMARY: In recent years, we see the increasing possibility of collecting data from multiple modalities in various fields, requesting novel methods to exploit the consensus among different data types. As exemplified in systems biology or epistasis analyses, the interactions between features may contain more information than the features themselves, thereby necessitating the use of feature networks. Furthermore, in real-life scenarios, subjects, such as patients or individuals, may originate from diverse populations, which underscores the importance of subtyping or clustering these subjects to account for their heterogeneity. In this study, we present a novel pipeline for selecting the most relevant features from multiple data types, constructing a feature network for each subject, and obtaining a subgrouping of samples informed by a phenotype of interest. We validated our method on synthetic data and demonstrated its superiority over several state-of-the-art multi-view clustering approaches. Additionally, we applied our method to a real-life, large-scale dataset of genomic data and facial images, where it effectively identified a meaningful BMI subtyping that complemented existing BMI categories and offered new biological insights. Our proposed method has wide applicability to complex multi-view or multi-omics datasets for tasks such as disease subtyping or personalized medicine

    netMUG: a novel network-guided multi-view clustering workflow for dissecting genetic and facial heterogeneity

    Get PDF
    Introduction: Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up.Methods: Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations.Results: We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. The clustering derived from netMUG achieved an adjusted Rand index of 1 with respect to the synthesized true labels. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these subgroups.Discussion: netMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures

    Bridging the gap in precision medicine: TranSYS training programme for next-generation scientists

    Get PDF
    IntroductionIn the evolving healthcare landscape, precision medicine's rise necessitates adaptable doctoral training. The European Union has recognized this and promotes the development of international, training-focused programmes called Innovative Training Networks (ITNs). In this article, we introduce TranSYS, an ITN focused on educating the next generation of precision medicine researchers. In an ambition to go beyond describing the consortium goals, our article explores two key aspects of ITNs: the training and collaboration.MethodsUsing self-report questionnaires, we evaluate the scientific, professional, and personal growth of ESRs over the duration of the ITN and investigate whether this can be linked to network activities.ResultsOur quantitative analysis approach reveals substantial improvements in scientific, professional, and social skills among young researchers facilitated by the engagement in this interdisciplinary network. We provide case studies underlining the advantages of collaborative environments, featuring innovative scientific exchange within TranSYS.DiscussionWhile challenging, ITNs foster positive growth in young researchers, yet exhibit weaknesses such as balancing stakeholder interests and partner commitment. We believe this study may benefit a variety of stakeholders, from prospective ITN creators to industry partners, to design better sustainable training networks going forward

    PLEX.I: a tool to discover features in multiplex networks that reflect clinical variation

    No full text
    Molecular profiling technologies, such as RNA sequencing, offer new opportunities to better discover and understand the molecular networks involved in complex biological processes. Clinically important variations of diseases, or responses to treatment, are often reflected, or even caused, by the dysregulation of molecular interaction networks specific to particular network regions. In this work, we propose the R package PLEX.I, that allows quantifying and testing variation in the direct neighborhood of a given node between networks corresponding to different conditions or states. We illustrate PLEX.I in two applications in which we discover variation that is associated with different responses to tamoxifen treatment and to sex-specific responses to bacterial stimuli. In the first case, PLEX.I analysis identifies two known pathways i) that have already been implicated in the same context as the tamoxifen mechanism of action, and ii) that would have not have been identified using classical differential gene expression analysis

    Individual-specific networks for prediction modelling – A scoping review of methods

    No full text
    International audienceBackground: Recent advances in biotechnology enable the acquisition of high-dimensional data on individuals, posing challenges for prediction models which traditionally use covariates such as clinical patient characteristics. Alternative forms of covariate representations for the features derived from these modern data modalities should be considered that can utilize their intrinsic interconnection. The connectivity information between these features can be represented as an individual-specific network defined by a set of nodes and edges, the strength of which can vary from individual to individual. Global or local graph-theoretical features describing the network may constitute potential prognostic biomarkers instead of or in addition to traditional covariates and may replace the often unsuccessful search for individual biomarkers in a high-dimensional predictor space. Methods: We conducted a scoping review to identify, collate and critically appraise the state-of-art in the use of individual-specific networks for prediction modelling in medicine and applied health research, published during 2000-2020 in the electronic databases PubMed, Scopus and Embase. Results: Our scoping review revealed the main application areas namely neurology and pathopsychology, followed by cancer research, cardiology and pathology (N = 148). Network construction was mainly based on Pearson correlation coefficients of repeated measurements, but also alternative approaches (e.g. partial correlation, visibility graphs) were found. For covariates measured only once per individual, network construction was mostly based on quantifying an individual's contribution to the overall group-level structure. Despite the multitude of identified methodological approaches for individual-specific network inference, the number of studies that were intended to enable the prediction of clinical outcomes for future individuals was quite limited, and most of the models served as proof of concept that network characteristics can in principle be useful for prediction. Conclusion: The current body of research clearly demonstrates the value of individual-specific network analysis for prediction modelling, but it has not yet been considered as a general tool outside the current areas of application. More methodological research is still needed on well-founded strategies for network inference, especially on adequate network sparsification and outcome-guided graph-theoretical feature extraction and selection, and on how networks can be exploited efficiently for prediction modelling

    Capturing the dynamics of microbial interactions through individual-specific networks

    No full text
    Longitudinal analysis of multivariate individual-specific microbiome profiles over time or across conditions remains dauntin. Most statistical tools and methods that are available to study microbiomes are based on cross-sectional data. Over the past few years, several attempts have been made to model the dynamics of bacterial species over time or across conditions. However, the field needs novel views on handling microbial interactions in temporal analyses. This study proposes a novel data analysis framework, MNDA, that combines representation learning and individual-specific microbial co-occurrence networks to uncover taxon neighborhood dynamics. As a use case, we consider a cohort of newborns with microbiomes available at 6 and 9 months after birth, and extraneous data available on the mode of delivery and diet changes between the considered time points. Our results show that prediction models for these extraneous outcomes based on an MNDA measure of local neighborhood dynamics for each taxon outperform traditional prediction models solely based on individual-specific microbial abundances. Furthermore, our results show that unsupervised similarity analysis of newborns in the study, again using the notion of a taxon's dynamic neighborhood derived from time-matched individual-specific microbial networks, can reveal different subpopulations of individuals, compared to standard microbiome-based clustering, with potential relevance to clinical practice. This study highlights the complementarity of microbial interactions and abundances in downstream analyses and opens new avenues to personalized prediction or stratified medicine with temporal microbiome data

    Capturing the dynamics of microbiomes using individual-specific networks

    Full text link
    AbstractBackgroundLongitudinal analysis of multivariate individual-specific microbiome profiles over time or across conditions remains a daunting task. The vast majority of statistical tools and methods available to study the microbiota are based upon cross-sectional data. Over the past few years, several attempts have been made to model the dynamics of bacterial species over time or across conditions. However, the field needs novel views on how to incorporate individual-specific microbial associations in temporal analyses when the focus lies on microbial interactions.ResultsHere, we propose a novel data analysis framework, called MNDA, to uncover taxon neighbourhood dynamics that combines representation learning and individual-specific microbiome co-occurrence networks. We show that tracking local neighbourhood dynamics in microbiome interaction or co-occurrence networks can yield complementary information to standard approaches that only use microbial abundances or pairwise microbial interactions. We use cohort data on infants for whom microbiome data was available at 6 and 9 months after birth, as well as information on mode of delivery and diet changes over time. In particular, MNDA-based prediction models outperform traditional prediction models based on individual-specific abundances, and enable the detection of microbes whose neighbourhood dynamics are informative of clinical variables. We further show that similarity analyses of individuals based on microbial neighbourhood dynamics can be used to find subpopulations of individuals with potential relevance to clinical practice. The annotated source code for the MNDA framework can be downloaded from:https://github.com/H2020TranSYS/microbiome_dynamicsConclusionsMNDA extracts information from matched microbiome profiles and opens new avenues to personalized prediction or stratified medicine with temporal microbiome data

    netMUG: a novel network-guided multi-view clustering workflow for dissecting genetic and facial heterogeneity.

    No full text
    Introduction: Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Methods: Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. Results: We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. The clustering derived from netMUG achieved an adjusted Rand index of 1 with respect to the synthesized true labels. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these subgroups. Discussion: netMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures
    corecore