14 research outputs found

    A Color-Coded Tape for Uterine Height Measurement: A Tool to Identify Preterm Pregnancies in Low Resource Settings

    Get PDF
    Introduction Neonatal mortality associated with preterm birth can be reduced with antenatal corticosteroids (ACS), yet <10% of eligible pregnant women in low-middle income countries. The inability to accurately determine gestational age (GA) leads to under-identification of high-risk women who could receive ACS or other interventions. To facilitate better identification in low-resource settings, we developed a color-coded tape for uterine height (UH) measurement and estimated its accuracy identifying preterm pregnancies. Methods We designed a series of colored-coded tapes with segments corresponding to UH measurements for 20–23.6 weeks, 24.0–35.6 weeks, and >36.0 weeks GA. In phase 1, UH measurements were collected prospectively in the Democratic Republic of Congo, India and Pakistan, using distinct tapes to address variation across regions and ethnicities. In phase 2, we tested accuracy in 250 pregnant women with known GA from early ultrasound enrolled at prenatal clinics in Argentina, India, Pakistan and Zambia. Providers masked to the ultrasound GA measured UH. Receiver operating characteristics (ROC) analysis was conducted. Results 1,029 pregnant women were enrolled. In all countries the tapes were most effective identifying pregnancies between 20.0–35.6 weeks, compared to the other GAs. The ROC areas under the curves and 95% confidence intervals were: Argentina 0.69 (0.63, 0.74); Zambia 0.72 (0.66, 0.78), India 0.84 (0.80, 0.89), and Pakistan 0.83 (0.78, 0.87). The sensitivity and specificity (and 95% confidence intervals) for identifying pregnancies between 20.0–35.6 weeks, respectively, were: Argentina 87% (82%–92%) and 51% (42%–61%); Zambia 91% (86%–95%) and 50% (40%–60%); India 78% (71%–85%) and 89% (83%–94%); Pakistan 63% (55%–70%) and 94% (89%–99%). Conclusions We observed moderate-good accuracy identifying pregnancies ≤35.6 weeks gestation, with potential usefulness at the community level in low-middle income countries to facilitate the preterm identification and interventions to reduce preterm neonatal mortality. Further research is needed to validate these findings on a population basis

    Junk food use and neurodevelopmental and growth outcomes in infants in low-resource settings

    Get PDF
    Introduction Feeding infants a sub-optimal diet deprives them of critical nutrients for their physical and cognitive development. The objective of this study is to describe the intake of foods of low nutritional value (junk foods) and identify the association with growth and developmental outcomes in infants up to 18 months in low-resource settings. Methods This is a secondary analysis of data from an iron-rich complementary foods (meat versus fortified cereal) randomized clinical trial on nutrition conducted in low-resource settings in four low- and middle-income countries (Democratic Republic of the Congo, Guatemala, Pakistan, and Zambia). Mothers in both study arms received nutritional messages on the importance of exclusive breastfeeding up to 6 months with continued breastfeeding up to at least 12 months. This study was designed to identify the socio-demographic predictors of feeding infants’ complementary foods of low nutritional value (junk foods) and to assess the associations between prevalence of junk food use with neurodevelopment (assessed with the Bayley Scales of Infant Development II) and growth at 18 months. Results 1,231 infants were enrolled, and 1,062 (86%) completed the study. Junk food feeding was more common in Guatemala, Pakistan, and Zambia than in the Democratic Republic of Congo. 7% of the infants were fed junk foods at 6 months which increased to 70% at 12 months. Non-exclusive breastfeeding at 6 months, higher maternal body mass index, more years of maternal and paternal education, and higher socioeconomic status were associated with feeding junk food. Prevalence of junk foods use was not associated with adverse neurodevelopmental or growth outcomes. Conclusion The frequency of consumption of junk food was high in these low-resource settings but was not associated with adverse neurodevelopment or growth over the study period

    Junk food use and neurodevelopmental and growth outcomes in infants in low-resource settings

    No full text
    Introduction: Feeding infants a sub-optimal diet deprives them of critical nutrients for their physical and cognitive development. The objective of this study is to describe the intake of foods of low nutritional value (junk foods) and identify the association with growth and developmental outcomes in infants up to 18 months in low-resource settings.Methods: This is a secondary analysis of data from an iron-rich complementary foods (meat versus fortified cereal) randomized clinical trial on nutrition conducted in low-resource settings in four low- and middle-income countries (Democratic Republic of the Congo, Guatemala, Pakistan, and Zambia). Mothers in both study arms received nutritional messages on the importance of exclusive breastfeeding up to 6 months with continued breastfeeding up to at least 12 months. This study was designed to identify the socio-demographic predictors of feeding infants\u27 complementary foods of low nutritional value (junk foods) and to assess the associations between prevalence of junk food use with neurodevelopment (assessed with the Bayley Scales of Infant Development II) and growth at 18 months.Results: 1,231 infants were enrolled, and 1,062 (86%) completed the study. Junk food feeding was more common in Guatemala, Pakistan, and Zambia than in the Democratic Republic of Congo. 7% of the infants were fed junk foods at 6 months which increased to 70% at 12 months. Non-exclusive breastfeeding at 6 months, higher maternal body mass index, more years of maternal and paternal education, and higher socioeconomic status were associated with feeding junk food. Prevalence of junk foods use was not associated with adverse neurodevelopmental or growth outcomes.Conclusion: The frequency of consumption of junk food was high in these low-resource settings but was not associated with adverse neurodevelopment or growth over the study period

    A population-based, multifaceted strategy to implement antenatal corticosteroid treatment versus standard care for the reduction of neonatal mortality due to preterm birth in low-income and middle-income countries: The ACT cluster-randomised trial

    Get PDF
    Background Antenatal corticosteroids for pregnant women at risk of preterm birth are among the most effective hospital-based interventions to reduce neonatal mortality. We aimed to assess the feasibility, effectiveness, and safety of a multifaceted intervention designed to increase the use of antenatal corticosteroids at all levels of health care in low-income and middle-income countries. Methods In this 18-month, cluster-randomised trial, we randomly assigned (1:1) rural and semi-urban clusters within six countries (Argentina, Guatemala, India, Kenya, Pakistan, and Zambia) to standard care or a multifaceted intervention including components to improve identification of women at risk of preterm birth and to facilitate appropriate use of antenatal corticosteroids. The primary outcome was 28-day neonatal mortality among infants less than the 5th percentile for birthweight (a proxy for preterm birth) across the clusters. Use of antenatal corticosteroids and suspected maternal infection were additional main outcomes. This trial is registered with ClinicalTrials.gov, number NCT01084096. Findings The ACT trial took place between October, 2011, and March, 2014 (start dates varied by site). 51 intervention clusters with 47 394 livebirths (2520 [5%] less than 5th percentile for birthweight) and 50 control clusters with 50 743 livebirths (2258 [4%] less than 5th percentile) completed follow-up. 1052 (45%) of 2327 women in intervention clusters who delivered less-than-5th-percentile infants received antenatal corticosteroids, compared with 215 (10%) of 2062 in control clusters (p<0·0001). Among the less-than-5th-percentile infants, 28-day neonatal mortality was 225 per 1000 livebirths for the intervention group and 232 per 1000 livebirths for the control group (relative risk [RR] 0·96, 95% CI 0·87-1·06, p=0·65) and suspected maternal infection was reported in 236 (10%) of 2361 women in the intervention group and 133 (6%) of 2094 in the control group (odds ratio [OR] 1·67, 1·33-2·09, p<0·0001). Among the whole population, 28-day neonatal mortality was 27·4 per 1000 livebirths for the intervention group and 23·9 per 1000 livebirths for the control group (RR 1·12, 1·02-1·22, p=0·0127) and suspected maternal infection was reported in 1207 (3%) of 48 219 women in the intervention group and 867 (2%) of 51 523 in the control group (OR 1·45, 1·33-1·58, p<0·0001). Interpretation Despite increased use of antenatal corticosteroids in low-birthweight infants in the intervention groups, neonatal mortality did not decrease in this group, and increased in the population overall. For every 1000 women exposed to this strategy, an excess of 3·5 neonatal deaths occurred, and the risk of maternal infection seems to have been increased. Funding Eunice Kennedy Shriver National Institute of Child Health and Human Development.Fil: Althabe, Fernando. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Belizan, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: McClure, Elizabeth M.. Rti International;Fil: Hemingway Foday, Jennifer. Rti International;Fil: Berrueta, Amanda Mabel. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Mazzoni, Agustina. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Ciganda, Alvaro. Unicem; Uruguay. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Goudar, Shivaprasad S.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Kodkany, Bhalachandra S.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Mahantshetti, Niranjana S.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Dhaded, Sangappa M.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Katageri, Geetanjali M.. S. Nijalingappa Medical College; IndiaFil: Metgud, Mrityunjay C.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Joshi, Anjali M.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Bellad, Mrutyunjaya B.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Honnungar, Narayan V.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Derman, Richard J.. Christiana Health Care Services; Estados UnidosFil: Saleem, Sarah. The Aga Khan University; PakistánFil: Pasha, Omrana. The Aga Khan University; PakistánFil: Ali, Sumera. The Aga Khan University; PakistánFil: Hasnain, Farid. The Aga Khan University; PakistánFil: Goldenberg, Robert L. Columbia University; Estados UnidosFil: Esamai, Fabian. Moi University; KeniaFil: Nyongesa, Paul. Moi University; KeniaFil: Ayunga, Silas. University of Alabama at Birmingahm; Estados UnidosFil: Liechty, Edward A. Indiana University; Estados UnidosFil: Garces, Ana L. Francisco Marroquin University; Guatemala. Fundacion Para la Alimentacion y Nutricion de Centro America y Panama; GuatemalaFil: Figueroa, Lester. Fundacion Para la Alimentacion y Nutricion de Centro America y Panama; GuatemalaFil: Hambidge, K Michael. State University of Colorado - Fort Collins; Estados UnidosFil: Krebs, Nancy F. State University of Colorado - Fort Collins; Estados UnidosFil: Patel, Archana. Government Medical College Nagpur; India. Lata Medical Research Foundation; IndiaFil: Bhandarkar, Anjali. Lata Medical Research Foundation; IndiaFil: Waikar, Manjushri. Lata Medical Research Foundation; IndiaFil: Hibberd, Patricia L. Massachusetts General Hospital; Estados UnidosFil: Chomba, Elwyn. University Teaching Hospital Lusaka; ZambiaFil: Carlo, Waldemar A. University of Alabama at Birmingahm; Estados UnidosFil: Mwiche, Angel. University Teaching Hospital Lusaka; ZambiaFil: Chiwila, Melody. Centre For Infectious Disease Research; ZambiaFil: Manasyan, Albert. University of Alabama at Birmingahm; Estados UnidosFil: Pineda, Sayury. Fundacion Para la Alimentacion y Nutricion de Centro America y Panama; GuatemalaFil: Meleth, Sreelatha. Rti International; Estados UnidosFil: Thorsten, Vanessa. Rti International; Estados UnidosFil: Stolka, Kristen. Rti International; Estados UnidosFil: Wallace, Dennis D. Rti International; Estados UnidosFil: Koso-Thomas, Marion. National Instituto Of Child Health & Human Developm.; Estados UnidosFil: Jobe, Alan H. Cincinnati Children's Hospital Medical Center; Estados UnidosFil: Buekens, Pierre M. Tulane University School Of Public Health And Tropical Medicine; Estados Unido
    corecore