115 research outputs found

    Lipids and phenylketonuria: current evidences pointed the need for lipidomics studies

    Get PDF
    Phenylketonuria (PKU) is the most prevalent inborn error of amino acid metabolism. The disease is due to the deficiency of phenylalanine (Phe) hydroxylase activity, which causes the accumulation of Phe. Early diagnosis through neonatal screening is essential for early treatment implementation, avoiding cognitive impairment and other irreversible sequelae. Treatment is based on Phe restriction in the diet that should be maintained throughout life. High dietary restrictions can lead to imbalances in specific nutrients, notably lipids. Previous studies in PKU patients revealed changes in levels of plasma/serum lipoprotein lipids, as well as in fatty acid profile of plasma and red blood cells. Most studies showed a decrease in important polyunsaturated fatty acids, namely DHA (22:6n-3), AA (20:4n-6) and EPA (20:5n-6). Increased oxidative stress and subsequent lipid peroxidation have also been observed in PKU. Despite the evidences that the lipid profile is changed in PKU patients, more studies are needed to understand in detail how lipidome is affected. As highlighted in this review, mass spectrometry-based lipidomics is a promising approach to evaluate the effect of the diet restrictions on lipid metabolism in PKU patients, monitor their outcome, namely concerning the risk for other chronic diseases, and find possible prognosis biomarkers.publishe

    Draft Genome Sequence Of The Biosurfactant-producing Bacterium Gordonia Amicalis Strain Ccma-559, Isolated From Petroleum-impacted Sediment.

    Get PDF
    Gordonia amicalis strain CCMA-559 was isolated from an oil-contaminated mangrove swamp and shown to produce biosurfactants. This strain is a strict aerobe that readily degrades an array of carbon sources, including N-acetylglucosamine, cellobiose, Tween 80, and 4-hydroxybenzoic acid, and, like other G. amicalis strains, likely desulfurizes dibenzothiophene.

    Isolation and enzyme bioprospection of endopytic bacteria associated with plants of Brazilian mangrove ecosystem

    Get PDF
    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems

    A 3D-printed hybrid nasal cartilage with functional electronic olfaction

    Get PDF
    Advances in biomanufacturing techniques have opened the doors to recapitulate human sensory organs such as the nose and ear in vitro with adequate levels of functionality. Such advancements have enabled simultaneous targeting of two challenges in engineered sensory organs, especially the nose: i) mechanically robust reconstruction of the nasal cartilage with high precision and ii) replication of the nose functionality: odor perception. Hybrid nasal organs can be equipped with remarkable capabilities such as augmented olfactory perception. Herein, a proof-of-concept for an odor-perceptive nose-like hybrid, which is composed of a mechanically robust cartilage-like construct and a biocompatible biosensing platform, is proposed. Specifically, 3D cartilage-like tissue constructs are created by multi-material 3D bioprinting using mechanically tunable chondrocyte-laden bioinks. In addition, by optimizing the composition of stiff and soft bioinks in macro-scale printed constructs, the competence of this system in providing improved viability and recapitulation of chondrocyte cell behavior in mechanically robust 3D constructs is demonstrated. Furthermore, the engineered cartilage-like tissue construct is integrated with an electrochemical biosensing system to bring functional olfactory sensations toward multiple specific airway disease biomarkers, explosives, and toxins under biocompatible conditions. Proposed hybrid constructs can lay the groundwork for functional bionic interfaces and humanoid cyborgs7

    The Deleterious Effects of Shiga Toxin Type 2 Are Neutralized In Vitro by FabF8:Stx2 Recombinant Monoclonal Antibody

    Get PDF
    Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50 ) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.Fil: Luz, Daniela. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Gomez, Fernando Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Ferreira, Raissa L.. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Melo, Bruna S.. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Guth, Beatriz E. C.. Universidade de Sao Paulo; BrasilFil: Quintilio, Wagner. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Moro, Ana Maria. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Presta, Agostina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Sacerdoti, Flavia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Ibarra, Cristina Adriana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Chen, Gang. University of Toronto; CanadĂĄFil: Sidhu, Sachdev S.. University of Toronto; CanadĂĄFil: Amaral, MarĂ­a Marta. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Fontes Piazza, Roxane MarĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; Argentin

    Evidence of MĂŒller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2

    Get PDF
    Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. MĂŒller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, in vivo electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs in vitro and resumes the generation of this neuronal type from late progenitors of the retina in vivo

    Physical Geography of the Gulf of Guinea Oceanic Islands

    Get PDF
    The Gulf of Guinea, in the Atlantic coast of Central Africa, has three oceanic islands that arose as part of the Cameroon Volcanic Line. From northeast to southwest these are PrĂ­ncipe (139 km2), SĂŁo TomĂ© (857 km2), and AnnobĂłn (17 km2). Although relatively close to the adjacent mainland, the islands have distinct climactic and geomorphologic characteristics, and have remained isolated throughout their geological history. Consequently, they have developed a unique biodiversity, rich in endemic species. We provide an integrated overview of the physical setting of the islands, including their geographic location, geological origin, topography, geology and soils, climate zones, and prevailing wind and ocean currents—key features that underlie the evolution of their biodiversity

    Dendritic Cells and Hepatocytes Use Distinct Pathways to Process Protective Antigen from Plasmodium in vivo

    Get PDF
    Malaria-protective CD8+ T cells specific for the circumsporozoite (CS) protein are primed by dendritic cells (DCs) after sporozoite injection by infected mosquitoes. The primed cells then eliminate parasite liver stages after recognizing the CS epitopes presented by hepatocytes. To define the in vivo processing of CS by DCs and hepatocytes, we generated parasites carrying a mutant CS protein containing the H-2Kb epitope SIINFEKL, and evaluated the T cell response using transgenic and mutant mice. We determined that in both DCs and hepatocytes CS epitopes must reach the cytosol and use the TAP transporters to access the ER. Furthermore, we used endosomal mutant (3d) and cytochrome c treated mice to address the role of cross-presentation in the priming and effector phases of the T cell response. We determined that in DCs, CS is cross-presented via endosomes while, conversely, in hepatocytes protein must be secreted directly into the cytosol. This suggests that the main targets of protective CD8+ T cells are parasite proteins exported to the hepatocyte cytosol. Surprisingly, however, secretion of the CS protein into hepatocytes was not dependent upon parasite-export (Pexel/VTS) motifs in this protein. Together, these results indicate that the presentation of epitopes to CD8+ T cells follows distinct pathways in DCs when the immune response is induced and in hepatocytes during the effector phase
    • 

    corecore