1,783 research outputs found

    Measurements in the near-wall region of a relaxing three-dimensional low speed turbulent air boundary layer

    Get PDF
    An experimental investigation was conducted at selected locations of the near-wall region of a three dimensional turbulent air boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30 deg swept, 5-foot chord wing-type model) faired into the side wall of a low speed wind tunnel. Wall shear stresses measured with a flush-mounted hot-film gage and a sublayer fence were in very good agreement with experimental data obtained with two Preston probes. With the upstream unit Reynolds number held constant at 325,000/ft. approximately one-fourth of the boundary layer thickness adjacent to the wall was surveyed with a single rotated hot-wire probe mounted on a specially designed minimum interference traverse mechanism. The boundary layer (approximately 3.5 in thick near the first survey station where the length Reynolds number was 5.5 million) had a maximum crossflow velocity ratio of 0.145 and a maximum crossflow angle of 21.875 deg close to the wall

    The content of catecholamines in the adrenal glands and sections of the brain under hypokinesia and injection of some neurotropic agents

    Get PDF
    The dynamics of catecholamine content were studied in the adrenal glands and in various region of the brain of white rats under hypokinesia and injections of neurotropic agents. Profound changes in body catecholamine balance occured as a result of prolonged acute restriction of motor activity. Adrenalin retention increased and noradrenanalin retention decreased in the adrenal glands, hypothalamus, cerebral hemispheres, cerebellum and medulla oblongata. Observed alterations in catecholamine retention varied depending upon the type of neurotropic substance utilized. Mellipramine increased catecholamine retention in the tissues under observation while spasmolytin brought about an increase in adrenalin concentration in the adrenals and a decrease in the brain

    Radiofrequency Ablation for Treating Chronic Pain of Bones: Effects of Nerve Locations

    Get PDF
    The present study aims at evaluating the effects of target nerve location from the bone tissue during continuous radiofrequency ablation (RFA) for chronic pain relief. A generalized three-dimensional heterogeneous computational model comprising of muscle, bone and target nerve has been considered. The continuous RFA has been performed through the monopolar needle electrode placed parallel to the target nerve. Finite-element-based coupled thermo-electric analysis has been conducted to predict the electric field and temperature distributions as well as the lesion volume attained during continuous RFA application. The quasi-static approximation of the Maxwell’s equations has been used to compute the electric field distribution and the Pennes bioheat equation has been used to model the heat transfer phenomenon during RFA of the target nerve. The electrical and thermo-physical properties considered in the present numerical study have been acquired from the well-characterized values available in the literature. The protocol of the RFA procedure has been adopted from the United States Food and Drug Administration (FDA) approved commercial devices available in the market and reported in the previous clinical studies. Temperature-dependent electrical conductivity along with the piecewise model of blood perfusion have been considered to correlate with the in-vivo scenarios. The numerical simulation results, presented in this work, reveal a strong dependence of lesion volume on the target nerve location from the considered bone. It is expected that the findings of this study would assist in providing a priori critical information to the clinical practitioners for enhancing the success rate of continuous RFA technique in addressing the chronic pain problems of bones

    Nonlocal Models in the Analysis of Brain Neurodegenerative Protein Dynamics with Application to Alzheimer's Disease

    Get PDF
    It is well known that today nearly one in six of the world’s population has to deal with neurodegenerative disorders. While a number of medical devices have been developed for the detection, prevention, and treatments of such disorders, some fundamentals of the progression of associated diseases are in urgent need of further clarification. In this paper, we focus on Alzheimer’s disease, where it is believed that the concentration changes in amyloid-beta and tau proteins play a central role in its onset and development. A multiscale model is proposed to analyze the propagation of these concentrations in the brain connectome. In particular, we consider a modified heterodimer model for the protein-protein interactions. Higher toxic concentrations of amyloid-beta and tau proteins destroy the brain cell. We have studied these propagations for the primary and secondary and their mixed tauopathy. We model the damage of a brain cell by the nonlocal contributions of these toxic loads present in the brain cells. With the help of rigorous analysis, we check the stability behaviour of the stationary points corresponding to the homogeneous system. After integrating the brain connectome data into the developed model, we see that the spreading patterns of the toxic concentrations for the whole brain are the same, but their concentrations are different in different regions. Also, the time to propagate the damage in each region of the brain connectome is different

    Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects

    Get PDF
    Thermal ablation is a widely applied electrosurgical process in medical treatment of soft biological tissues. Numerical modeling and simulations play an important role in prediction of temperature distribution and damage volume during the treatment planning stage of associated therapies. In this contribution we report a coupled thermo-electro-mechanical model, accounting for heat relaxation time, for more accurate and precise prediction of the temperature distribution, tissue deformation and damage volume during the thermal ablation of biological tissues. Finite element solutions are obtained for most widely used percutaneous thermal ablative techniques, viz., radiofrequency ablation (RFA) and microwave ablation (MWA). Importantly, both tissue expansion and shrinkage have been considered for modeling the tissue deformation in the coupled model of high temperature thermal ablation. The coupled model takes into account the non-Fourier effects, considering both single-phase lag (SPL) and dual-phase-lag (DPL) models of bio-heat transfer. The temperature-dependent electrical and thermal parameters, damage-dependent blood perfusion rate and phase change effect accounting for tissue vaporization have been accounted for obtaining more clinically relevant model. The proposed model predictions are found to be in good agreement against the temperature distribution and damage volume reported by previous experimental studies. The numerical simulation results revealed that the non-Fourier effects cause a decrease in the predicted temperature distribution, tissue deformation and damage volume during the high temperature thermal ablative procedures. Furthermore, the effects of different magnitudes of phase lags of the heat flux and temperature gradient on the predicted treatment outcomes of the considered thermal ablative modalities are also quantified and discussed in detail
    • …
    corecore