2,843 research outputs found
Radiation from carbon in a rocket plume mixing region with coupled convective and radiative energy fluxes and general optical thickness
Carbon radiant heat transfer from plume mixing region to base of rocket vehicl
Preparation of microscopic cross sections of U235 for reactor calculations
Preparation of microscopic cross section of uranium 235 for high temperature reactor calculation
Population synthesis of HII galaxies
We study the stellar population of galaxies with active star formation,
determining ages of the stellar components by means of spectral population
synthesis of their absorption spectra. The data consist of optical spectra of
185 nearby () emission line galaxies. They are mostly HII
galaxies, but we also include some Starbursts and Seyfert 2s, for comparison
purposes. They were grouped into 19 high signal-to-noise ratio template
spectra, according to their continuum distribution, absorption and emission
line characteristics. The templates were then synthesized with a star cluster
spectral base. The synthesis results indicate that HII galaxies are typically
age-composite stellar systems, presenting important contribution from
generations up to as old as 500 Myr. We detect a significant contribution of
populations with ages older than 1 Gyr in two groups of HII galaxies. The age
distributions of stellar populations among Starbursts can vary considerably
despite similarities in the emission line spectra. In the case of Seyfert 2
groups we obtain important contributions of old population, consistent with a
bulge. From the diversity of star formation histories, we conclude that typical
HII galaxies in the local universe are not systems presently forming their
first stellar generation.Comment: 12 pages, 4 figures, MNRAS in pres
Observations of the 51.8 micron (O III) emission line in Orion
The 51.8 micron fine structure transition P2:3P2 3P1 for doubly ionized oxygen was observed in the Orion nebula. The observed line strength is of 5 plus or minus 3 times 10 to the minus 15th power watt/sq cm is in good agreement with theoretical predictions. Observations are consistent with the newly predicted 51.8 micron line position. The line lies close to an atmospheric water vapor feature at 51.7 micron, but is sufficiently distant so that corrections for this feature are straightforward. Observations of the 51.8 (O III) line are particularly important since the previously discovered 88 micron line from the same ion also is strong. This pair of lines should, therefore, yield new data about densities in observed H II regions; or else, if density data already are available from radio or other observations, the lines can be used to determine the differential dust absorption between 52 and 88 micron in front of heavily obscured regions
Adaptive Optics observations of LBQS 0108+0028: K-band detection of the host galaxy of a radio-quiet QSO at z=2
We report the first unambiguous detection of the host galaxy of a normal
radio-quiet QSO at high-redshift in K-band. The luminosity of the host
comprises about 35% of the total K-band luminosity. Assuming the average colour
of QSOs at z=2, the host would be about 5 to 6 mag brighter than an unevolved
L* galaxy placed at z=2, and 3 to 4 mag brighter than a passively evolved L*
galaxy at the same redshift. The luminosity of the host galaxy of the QSO would
thus overlap with the highest found in radio-loud QSOs and radio-galaxies at
the same redshift.Comment: Accepted to be published in MNRAS. 4 pages, 2 postscript figures.
Also available at http://www.mpa-garching.mpg.de/~itzia
ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo
(abbreviated) We aim to study the inner wind of the well-known AGB star CW
Leo. Different diagnostics probing different geometrical scales have pointed
toward a non-homogeneous mass-loss process: dust clumps are observed at
milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and
multi-concentric shells are detected beyond 1". We present the first ALMA Cycle
0 band 9 data around 650 GHz. The full-resolution data have a spatial
resolution of 0".42x0".24, allowing us to study the morpho-kinematical
structure within ~6". Results: We have detected 25 molecular lines. The
emission of all but one line is spatially resolved. The dust and molecular
lines are centered around the continuum peak position. The dust emission has an
asymmetric distribution with a central peak flux density of ~2 Jy. The
molecular emission lines trace different regions in the wind acceleration
region and suggest that the wind velocity increases rapidly from about 5 R*
almost reaching the terminal velocity at ~11 R*. The channel maps for the
brighter lines show a complex structure; specifically for the 13CO J=6-5 line
different arcs are detected within the first few arcseconds. The curved
structure present in the PV map of the 13CO J=6-5 line can be explained by a
spiral structure in the inner wind, probably induced by a binary companion.
From modeling the ALMA data, we deduce that the potential orbital axis for the
binary system lies at a position angle of ~10-20 deg to the North-East and that
the spiral structure is seen almost edge-on. We infer an orbital period of 55
yr and a binary separation of 25 au (or ~8.2 R*). We tentatively estimate that
the companion is an unevolved low-mass main-sequence star. The ALMA data hence
provide us for the first time with the crucial kinematical link between the
dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen
at arcsecond scale.Comment: 22 pages, 18 Figures, Astronomy & Astrophysic
The Initial Mass Functions in the Super-Star-Clusters NGC 1569A and NGC 1705-1
I use recent photometric and stellar velocity dispersion measurements of the
super-star-clusters (SSCs) NGC 1569A and NGC 1705-1 to determine their
present-day luminosity/mass (L_V/M) ratios. I then use the inferred L_V/M
ratios, together with population synthesis models of evolving star-clusters, to
constrain the initial-mass-functions (IMFs) in these objects.
I find that (L_V/M)_solar=28.9 in 1569A, and (L_V/M)_solar=126 in 1705-1. It
follows that in 1569A the IMF is steep with alpha~2.5 for m**(-alpha)dm IMFs
which extend to 0.1 M_sun. This implies that most of the stellar mass in 1569A
is contained in low-mass (< 1 M_sun) stars. However, in 1705-1 the IMF is
either flat, with alpha<2$, or it is truncated at a lower mass-limit between 1
and 3 M_sun.
I compare the inferred IMFs with the mass functions (MFs) of Galactic
globular clusters. It appears that 1569A has a sufficient reservoir of low-mass
stars for it to plausibly evolve into an object similar to Galactic globular
clusters. However, the apparent deficiency of low-mass stars in 1705-1 may make
it difficult for this SSC to become a globular cluster. If low-mass stars do
dominate the cluster mass in 1705-1, the large L_V/M ratio in this SSC may be
evidence that the most massive stars have formed close to the cluster cores.Comment: ApJ, in press. 19 Pages, Latex; [email protected]
Chandra Observations of ULIRGs: Extended Hot Gas Halos in Merging Galaxies
We study the properties of hot gaseous halos in 10 nearby ultraluminous IRAS
galaxies observed with the ACIS instrument on board Chandra. For all sample
galaxies, diffuse soft X-ray emissions are found within ~10 kpc of the central
region; their spectra are well fitted by a MEKAL model plus emission lines from
alpha-elements and other ions. The temperature of the hot gas is about 0.7 keV
and metallicity is about 1 solar. Outside the central region, extended hot
gaseous halos are found for nine out of the ten ULIRGs. Most spectra of these
extended halos can be fitted with a MEKAL model with a temperature of about 0.6
keV and a low metallicity (~ 0.1 solar). We discuss the implications of our
results on the origin of X-ray halos in elliptical galaxies and the feedback
processes associated with starbursts.Comment: 31 pages, 6 figuers, ApJ in press, accepted versio
Quantifying offshore fore-arc deformation and splay-fault slip using drowned Pleistocene shorelines, Arauco Bay, Chile
Indexación: Web of Science; Scopus.Most of the deformation associated with the seismic cycle in subduction zones occurs offshore and has been therefore difficult to quantify with direct observations at millennial timescales. Here we study millennial deformation associated with an active splay-fault system in the Arauco Bay area off south central Chile. We describe hitherto unrecognized drowned shorelines using high-resolution multibeam bathymetry, geomorphic, sedimentologic, and paleontologic observations and quantify uplift rates using a Landscape Evolution Model. Along a margin-normal profile, uplift rates are 1.3 m/ka near the edge of the continental shelf, 1.5 m/ka at the emerged Santa María Island, −0.1 m/ka at the center of the Arauco Bay, and 0.3 m/ka in the mainland. The bathymetry images a complex pattern of folds and faults representing the surface expression of the crustal-scale Santa María splay-fault system. We modeled surface deformation using two different structural scenarios: deep-reaching normal faults and deep-reaching reverse faults with shallow extensional structures. Our preferred model comprises a blind reverse fault extending from 3 km depth down to the plate interface at 16 km that slips at a rate between 3.0 and 3.7 m/ka. If all the splay-fault slip occurs during every great megathrust earthquake, with a recurrence of ~150–200 years, the fault would slip ~0.5 m per event, equivalent to a magnitude ~6.4 earthquake. However, if the splay-fault slips only with a megathrust earthquake every ~1000 years, the fault would slip ~3.7 m per event, equivalent to a magnitude ~7.5 earthquake. ©2017. American Geophysical Union.http://onlinelibrary.wiley.com/doi/10.1002/2016JB013339/epd
- …