577 research outputs found

    A double coset ansatz for integrability in AdS/CFT

    Full text link
    We give a proof that the expected counting of strings attached to giant graviton branes in AdS_5 x S^5, as constrained by the Gauss Law, matches the dimension spanned by the expected dual operators in the gauge theory. The counting of string-brane configurations is formulated as a graph counting problem, which can be expressed as the number of points on a double coset involving permutation groups. Fourier transformation on the double coset suggests an ansatz for the diagonalization of the one-loop dilatation operator in this sector of strings attached to giant graviton branes. The ansatz agrees with and extends recent results which have found the dynamics of open string excitations of giants to be given by harmonic oscillators. We prove that it provides the conjectured diagonalization leading to harmonic oscillators.Comment: 33 pages, 3 figures; v2: references adde

    ABJM Dibaryon Spectroscopy

    Get PDF
    We extend the proposal for a detailed map between wrapped D-branes in Anti-de Sitter space and baryon-like operators in the associated dual conformal field theory provided in hep-th/0202150 to the recently formulated AdS_4 \times CP^3/ABJM correspondence. In this example, the role of the dibaryon operator of the 3-dimensional CFT is played by a D4-brane wrapping a CP^2 \subset CP^3. This topologically stable D-brane in the AdS_4 \times CP^3 is nothing but one-half of the maximal giant graviton on CP^3.Comment: 26 page

    Surprisingly Simple Spectra

    Full text link
    The large N limit of the anomalous dimensions of operators in N=4{\cal N}=4 super Yang-Mills theory described by restricted Schur polynomials, are studied. We focus on operators labeled by Young diagrams that have two columns (both long) so that the classical dimension of these operators is O(N). At large N these two column operators mix with each other but are decoupled from operators with n2n\ne 2 columns. The planar approximation does not capture the large N dynamics. For operators built with 2, 3 or 4 impurities the dilatation operator is explicitly evaluated. In all three cases, in a certain limit, the dilatation operator is a lattice version of a second derivative, with the lattice emerging from the Young diagram itself. The one loop dilatation operator is diagonalized numerically. All eigenvalues are an integer multiple of 8gYM28g_{YM}^2 and there are interesting degeneracies in the spectrum. The spectrum we obtain for the one loop anomalous dimension operator is reproduced by a collection of harmonic oscillators. This equivalence to harmonic oscillators generalizes giant graviton results known for the BPS sector and further implies that the Hamiltonian defined by the one loop large NN dilatation operator is integrable. This is an example of an integrable dilatation operator, obtained by summing both planar and non-planar diagrams.Comment: 34 page

    Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories

    Full text link
    We carry out a gauge invariant analysis of certain perturbations of D2D-2-branes solutions of low energy string theories. We get generically a system of second order coupled differential equations, and show that only in very particular cases it is possible to reduce it to just one differential equation. Later, we apply it to a multi-parameter, generically singular family of constant dilaton solutions of non-critical string theories in DD dimensions, a generalization of that recently found in arXiv:0709.0471[hep-th]. According to arguments coming from the holographic gauge theory-gravity correspondence, and at least in some region of the parameters space, we obtain glue-ball spectra of Yang-Mills theories in diverse dimensions, putting special emphasis in the scalar metric perturbations not considered previously in the literature in the non critical setup. We compare our numerical results to those studied previously and to lattice results, finding qualitative and in some cases, tuning properly the parameters, quantitative agreement. These results seem to show some kind of universality of the models, as well as an irrelevance of the singular character of the solutions. We also develop the analysis for the T-dual, non trivial dilaton family of solutions, showing perfect agreement between them.Comment: A new reference added

    Light States in Chern-Simons Theory Coupled to Fundamental Matter

    Full text link
    Motivated by developments in vectorlike holography, we study SU(N) Chern-Simons theory coupled to matter fields in the fundamental representation on various spatial manifolds. On the spatial torus T^2, we find light states at small `t Hooft coupling \lambda=N/k, where k is the Chern-Simons level, taken to be large. In the free scalar theory the gaps are of order \sqrt {\lambda}/N and in the critical scalar theory and the free fermion theory they are of order \lambda/N. The entropy of these states grows like N Log(k). We briefly consider spatial surfaces of higher genus. Based on results from pure Chern-Simons theory, it appears that there are light states with entropy that grows even faster, like N^2 Log(k). This is consistent with the log of the partition function on the three sphere S^3, which also behaves like N^2 Log(k). These light states require bulk dynamics beyond standard Vasiliev higher spin gravity to explain them.Comment: 58 pages, LaTeX, no figures, Minor error corrected, references added, The main results of the paper have not change

    Comparative cytogenetics of three species of Dichotomius (Coleoptera, Scarabaeidae)

    Get PDF
    Meiotic and mitotic chromosomes of Dichotomius nisus, D. semisquamosus and D. sericeus were analyzed after conventional staining, C-banding and silver nitrate staining. In addition, Dichotomius nisus and D. semisquamosus chromosomes were also analyzed after fluorescent in situ hybridization (FISH) with an rDNA probe. The species analyzed had an asymmetrical karyotype with 2n = 18 and meta-submetacentric chromosomes. The sex determination mechanism was of the Xyp type in D. nisus and D. semisquamosus and of the Xy r type in D. sericeus. C-banding revealed the presence of pericentromeric blocks of constitutive heterochromatin (CH) in all the chromosomes of the three species. After silver staining, the nucleolar organizer regions (NORs) were located in autosomes of D. semisquamosus and D. sericeus and in the sexual bivalent of D. nisus. FISH with an rDNA probe confirmed NORs location in D. semisquamosus and in D. nisus. Our results suggest that chromosome inversions and fusions occurred during the evolution of the group

    Holographic Geometry of Entanglement Renormalization in Quantum Field Theories

    Get PDF
    We study a conjectured connection between the AdS/CFT and a real-space quantum renormalization group scheme, the multi-scale entanglement renormalization ansatz (MERA). By making a close contact with the holographic formula of the entanglement entropy, we propose a general definition of the metric in the MERA in the extra holographic direction, which is formulated purely in terms of quantum field theoretical data. Using the continuum version of the MERA (cMERA), we calculate this emergent holographic metric explicitly for free scalar boson and free fermions theories, and check that the metric so computed has the properties expected from AdS/CFT. We also discuss the cMERA in a time-dependent background induced by quantum quench and estimate its corresponding metric.Comment: 42pages, 9figures, reference added, minor chang

    Differential Affinity and Catalytic Activity of CheZ in E. coli Chemotaxis

    Get PDF
    Push–pull networks, in which two antagonistic enzymes control the activity of a messenger protein, are ubiquitous in signal transduction pathways. A classical example is the chemotaxis system of the bacterium Escherichia coli, in which the kinase CheA and the phosphatase CheZ regulate the phosphorylation level of the messenger protein CheY. Recent experiments suggest that both the kinase and the phosphatase are localized at the receptor cluster, and Vaknin and Berg recently demonstrated that the spatial distribution of the phosphatase can markedly affect the dose–response curves. We argue, using mathematical modeling, that the canonical model of the chemotaxis network cannot explain the experimental observations of Vaknin and Berg. We present a new model, in which a small fraction of the phosphatase is localized at the receptor cluster, while the remainder freely diffuses in the cytoplasm; moreover, the phosphatase at the cluster has a higher binding affinity for the messenger protein and a higher catalytic activity than the phosphatase in the cytoplasm. This model is consistent with a large body of experimental data and can explain many of the experimental observations of Vaknin and Berg. More generally, the combination of differential affinity and catalytic activity provides a generic mechanism for amplifying signals that could be exploited in other two-component signaling systems. If this model is correct, then a number of recent modeling studies, which aim to explain the chemotactic gain in terms of the activity of the receptor cluster, should be reconsidered

    Shot noise in mesoscopic systems

    Get PDF
    This is a review of shot noise, the time-dependent fluctuations in the electrical current due to the discreteness of the electron charge, in small conductors. The shot-noise power can be smaller than that of a Poisson process as a result of correlations in the electron transmission imposed by the Pauli principle. This suppression takes on simple universal values in a symmetric double-barrier junction (suppression factor 1/2), a disordered metal (factor 1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect on this shot-noise suppression, while thermalization of the electrons due to electron-electron scattering increases the shot noise slightly. Sub-Poissonian shot noise has been observed experimentally. So far unobserved phenomena involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn, NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
    corecore