177 research outputs found

    No small feat: microRNA responses during vocal communication in songbirds

    Get PDF
    Simply hearing the song produced by another bird of the same species triggers the regulation of microRNAs (miRNAs) in high-order auditory parts of the zebra finch brain. Some of the identified miRNAs appear to be unique to birds, possibly to songbirds. These findings, reported in BMC Genomics, highlight the complexities of gene regulation associated with vocal communication and point to possible key regulators of song-triggered gene networks

    Long-Distance Retinoid Signaling in the Zebra Finch Brain

    Get PDF
    All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, is a powerful signaling molecule that regulates large-scale morphogenetic processes during vertebrate embryonic development, but is also involved post-natally in regulating neural plasticity and cognition. In songbirds, it plays an important role in the maturation of learned song. The distribution of the ATRA-synthesizing enzyme, zRalDH, and of ATRA receptors (RARs) have been described, but information on the distribution of other components of the retinoid signaling pathway is still lacking. To address this gap, we have determined the expression patterns of two obligatory RAR co-receptors, the retinoid X receptors (RXR) α and γ, and of the three ATRA-degrading cytochromes CYP26A1, CYP26B1, and CYP26C1. We have also studied the distribution of zRalDH protein using immunohistochemistry, and generated a refined map of ATRA localization, using a modified reporter cell assay to examine entire brain sections. Our results show that (1) ATRA is more broadly distributed in the brain than previously predicted by the spatially restricted distribution of zRalDH transcripts. This could be due to long-range transport of zRalDH enzyme between different nuclei of the song system: Experimental lesions of putative zRalDH peptide source regions diminish ATRA-induced transcription in target regions. (2) Four telencephalic song nuclei express different and specific subsets of retinoid-related receptors and could be targets of retinoid regulation; in the case of the lateral magnocellular nucleus of the anterior nidopallium (lMAN), receptor expression is dynamically regulated in a circadian and age-dependent manner. (3) High-order auditory areas exhibit a complex distribution of transcripts representing ATRA synthesizing and degrading enzymes and could also be a target of retinoid signaling. Together, our survey across multiple connected song nuclei and auditory brain regions underscores the prominent role of retinoid signaling in modulating the circuitry that underlies the acquisition and production of learned vocalizations

    Conserved syntenic clusters of protein coding genes are missing in birds

    Get PDF
    BACKGROUND: Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. RESULTS: Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. CONCLUSIONS: Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0565-1) contains supplementary material, which is available to authorized users

    Chest associated to motor physiotherapy improves cardiovascular variables in newborns with respiratory distress syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aimed to evaluate the effects of chest and motor physiotherapy treatment on hemodynamic variables in preterm newborns with respiratory distress syndrome.</p> <p>Methods</p> <p>We evaluated heart rate (HR), respiratory rate (RR), systolic (SAP), mean (MAP) and diastolic arterial pressure (DAP), temperature and oxygen saturation (SO<sub>2</sub>%) in 44 newborns with respiratory distress syndrome. We compared all variables between before physiotherapy treatment vs. after the last physiotherapy treatment. Newborns were treated during 11 days. Variables were measured 2 minutes before and 5 minutes after each physiotherapy treatment. We applied paired Student t test to compare variables between the two periods.</p> <p>Results</p> <p>HR (148.5 ± 8.5 bpm vs. 137.1 ± 6.8 bpm - p < 0.001), SAP (72.3 ± 11.3 mmHg vs. 63.6 ± 6.7 mmHg - p = 0.001) and MAP (57.5 ± 12 mmHg vs. 47.7 ± 5.8 mmHg - p = 0.001) were significantly reduced after 11 days of physiotherapy treatment compared to before the first session. There were no significant changes regarding RR, temperature, DAP and SO<sub>2</sub>%.</p> <p>Conclusions</p> <p>Chest and motor physiotherapy improved cardiovascular parameters in respiratory distress syndrome newborns.</p

    Noradrenergic Control of Gene Expression and Long-Term Neuronal Adaptation Evoked by Learned Vocalizations in Songbirds

    Get PDF
    Norepinephrine (NE) is thought to play important roles in the consolidation and retrieval of long-term memories, but its role in the processing and memorization of complex acoustic signals used for vocal communication has yet to be determined. We have used a combination of gene expression analysis, electrophysiological recordings and pharmacological manipulations in zebra finches to examine the role of noradrenergic transmission in the brain’s response to birdsong, a learned vocal behavior that shares important features with human speech. We show that noradrenergic transmission is required for both the expression of activity-dependent genes and the long-term maintenance of stimulus-specific electrophysiological adaptation that are induced in central auditory neurons by stimulation with birdsong. Specifically, we show that the caudomedial nidopallium (NCM), an area directly involved in the auditory processing and memorization of birdsong, receives strong noradrenergic innervation. Song-responsive neurons in this area express α-adrenergic receptors and are in close proximity to noradrenergic terminals. We further show that local α-adrenergic antagonism interferes with song-induced gene expression, without affecting spontaneous or evoked electrophysiological activity, thus dissociating the molecular and electrophysiological responses to song. Moreover, α-adrenergic antagonism disrupts the maintenance but not the acquisition of the adapted physiological state. We suggest that the noradrenergic system regulates long-term changes in song-responsive neurons by modulating the gene expression response that is associated with the electrophysiological activation triggered by song. We also suggest that this mechanism may be an important contributor to long-term auditory memories of learned vocalizations
    • …
    corecore