217 research outputs found

    Fast DNA translocation through a solid-state nanopore

    Full text link
    We report translocation experiments on double-strand DNA through a silicon oxide nanopore. Samples containing DNA fragments with seven different lengths between 2000 to 96000 basepairs have been electrophoretically driven through a 10 nm pore. We find a power-law scaling of the translocation time versus length, with an exponent of 1.26 ±\pm 0.07. This behavior is qualitatively different from the linear behavior observed in similar experiments performed with protein pores. We address the observed nonlinear scaling in a theoretical model that describes experiments where hydrodynamic drag on the section of the polymer outside the pore is the dominant force counteracting the driving. We show that this is the case in our experiments and derive a power-law scaling with an exponent of 1.18, in excellent agreement with our data.Comment: 5 pages, 2 figures. Submitted to PR

    Autoregulation of the Drosophila Noncoding roX1 RNA Gene

    Get PDF
    Most genes along the male single X chromosome in Drosophila are hypertranscribed about two-fold relative to each of the two female X chromosomes. This is accomplished by the MSL (male-specific lethal) complex that acetylates histone H4 at lysine 16. The MSL complex contains two large noncoding RNAs, roX1 (RNA on X) and roX2, that help target chromatin modifying enzymes to the X. The roX RNAs are functionally redundant but differ in size, sequence, and transcriptional control. We wanted to find out how roX1 production is regulated. Ectopic DC can be induced in wild-type (roX1+ roX2+) females if we provide a heterologous source of MSL2. However, in the absence of roX2, we found that roX1 expression failed to come on reliably. Using an in situ hybridization probe that is specific only to endogenous roX1, we found that expression was restored if we introduced either roX2 or a truncated but functional version of roX1. This shows that pre-existing roX RNA is required to positively autoregulate roX1 expression. We also observed massive cis spreading of the MSL complex from the site of roX1 transcription at its endogenous location on the X chromosome. We propose that retention of newly assembled MSL complex around the roX gene is needed to drive sustained transcription and that spreading into flanking chromatin contributes to the X chromosome targeting specificity. Finally, we found that the gene encoding the key male-limited protein subunit, msl2, is transcribed predominantly during DNA replication. This suggests that new MSL complex is made as the chromatin template doubles. We offer a model describing how the production of roX1 and msl2, two key components of the MSL complex, are coordinated to meet the dosage compensation demands of the male cell

    A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Drosophila </it>Male Specific Lethal (MSL) complex contains chromatin modifying enzymes and non-coding <it>roX </it>RNA. It paints the male X at hundreds of bands where it acetylates histone H4 at lysine 16. This epigenetic mark increases expression from the single male X chromosome approximately twofold above what gene-specific factors produce from each female X chromosome. This equalises X-linked gene expression between the sexes. Previous screens for components of dosage compensation relied on a distinctive male-specific lethal phenotype.</p> <p>Results</p> <p>Here, we report a new strategy relying upon an unusual male-specific mosaic eye pigmentation phenotype produced when the MSL complex acts upon autosomal <it>roX1 </it>transgenes. Screening the second chromosome identified at least five loci, two of which are previously described components of the MSL complex. We focused our analysis on the modifier alleles of MSL1 and MLE (for 'maleless'). The MSL1 lesions are not simple nulls, but rather alter the PEHE domain that recruits the MSL3 chromodomain and MOF ('males absent on first') histone acetyltransferase subunits to the complex. These mutants are compromised in their ability to recruit MSL3 and MOF, dosage compensate the X, and support long distance spreading from <it>roX1 </it>transgenes. Yet, paradoxically, they were isolated because they somehow increase MSL complex activity immediately around <it>roX1 </it>transgenes in combination with wild-type MSL1 subunits.</p> <p>Conclusions</p> <p>We propose that these diverse phenotypes arise from perturbations in assembly of MSL subunits onto nascent <it>roX </it>transcripts. This strategy is a promising alternative route for identifying previously unknown components of the dosage compensation pathway and novel alleles of known MSL proteins.</p

    Nanopore Detector based analysis of single-molecule conformational kinetics and binding interactions

    Get PDF
    BACKGROUND: A Nanopore Detector provides a means to transduce single molecule events into observable channel current changes. Nanopore-based detection can report directly, or indirectly, on single molecule kinetics. The nanopore-based detector can directly measure molecular characteristics in terms of the blockade properties of individual molecules – this is possible due to the kinetic information that is embedded in the blockade measurements, where the adsorption-desorption history of the molecule to the surrounding channel, and the configurational changes in the molecule itself, imprint on the ionic flow through the channel. This rich source of information offers prospects for DNA sequencing and single nucleotide polymorphism (SNP) analysis. A nanopore-based detector can also measure molecular characteristics indirectly, by using a reporter molecule that binds to certain molecules, with subsequent distinctive blockade by the bound-molecule complex. RESULTS: It is hypothesized that reaction histories of individual molecules can be observed on model DNA/DNA, DNA/Protein, and Protein/Protein systems. Preliminary results are all consistent with this hypothesis. Nanopore detection capabilities are also described for highly discriminatory biosensing, binding strength characterization, and rapid immunological screening. CONCLUSION: In essence, the heart of chemistry is now accessible to a new, single-molecule, observation method that can track both external molecular binding states, and internal conformation states

    Observation of the Dynamic Beta Effect at CESR with CLEO

    Get PDF
    Using the silicon strip detector of the CLEO experiment operating at the Cornell Electron-positron Storage Ring (CESR), we have observed that the horizontal size of the luminous region decreases in the presence of the beam-beam interaction from what is expected without the beam-beam interaction. The dependence on the bunch current agrees with the prediction of the dynamic beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.

    X chromosomal regulation in flies: when less is more

    Get PDF
    In Drosophila, dosage compensation of the single male X chromosome involves upregulation of expression of X linked genes. Dosage compensation complex or the male specific lethal (MSL) complex is intimately involved in this regulation. The MSL complex members decorate the male X chromosome by binding on hundreds of sites along the X chromosome. Recent genome wide analysis has brought new light into X chromosomal regulation. It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation. Future studies integrating these aspects promise to shed more light into this epigenetic phenomenon

    Requirement of Male-Specific Dosage Compensation in Drosophila Females—Implications of Early X Chromosome Gene Expression

    Get PDF
    Dosage compensation equates between the sexes the gene dose of sex chromosomes that carry substantially different gene content. In Drosophila, the single male X chromosome is hypertranscribed by approximately two-fold to effect this correction. The key genes are male lethal and appear not to be required in females, or affect their viability. Here, we show these male lethals do in fact have a role in females, and they participate in the very process which will eventually shut down their function—female determination. We find the male dosage compensation complex is required for upregulating transcription of the sex determination master switch, Sex-lethal, an X-linked gene which is specifically activated in females in response to their two X chromosomes. The levels of some X-linked genes are also affected, and some of these genes are used in the process of counting the number of X chromosomes early in development. Our data suggest that before the female state is set, the ground state is male and female X chromosome expression is elevated. Females thus utilize the male dosage compensation process to amplify the signal which determines their fate

    Coronal voids and their magnetic nature

    Full text link
    Context. Extreme ultraviolet (EUV) observations of the quiet solar atmosphere reveal extended regions of weak emission compared to the ambient quiescent corona. The magnetic nature of these coronal features is not well understood.Aims. We study the magnetic properties of the weakly emitting extended regions, which we name coronal voids. In particular, we aim to understand whether these voids result from a reduced heat input into the corona or if they are associated with mainly unipolar and possibly open magnetic fields, similar to coronal holes. Methods. We defined the coronal voids via an intensity threshold of 75% of the mean quiet-Sun (QS) EUV intensity observed by the high- resolution EUV channel (HRIEUV) of the Extreme Ultraviolet Imager on Solar Orbiter. The line-of-sight magnetograms of the same solar region recorded by the High Resolution Telescope of the Polarimetric and Helioseismic Imager allowed us to compare the photospheric magnetic field beneath the coronal voids with that in other parts of the QS.Results. The coronal voids studied here range in size from a few granules to a few supergranules and on average exhibit a reduced intensity of 67% of the mean value of the entire field of view. The magnetic flux density in the photosphere below the voids is 76% (or more) lower than in the surrounding QS. Specifically, the coronal voids show much weaker or no network structures. The detected flux imbalances fall in the range of imbalances found in QS areas of the same size. Conclusions. We conclude that coronal voids form because of locally reduced heating of the corona due to reduced magnetic flux density in the photosphere. This makes them a distinct class of (dark) structure, different from coronal holes

    Coronal voids and their magnetic nature

    Get PDF
    Context: Extreme ultraviolet (EUV) observations of the quiet solar atmosphere reveal extended regions of weak emission compared to the ambient quiescent corona. The magnetic nature of these coronal features is not well understood. // Aims: We study the magnetic properties of the weakly emitting extended regions, which we name coronal voids. In particular, we aim to understand whether these voids result from a reduced heat input into the corona or if they are associated with mainly unipolar and possibly open magnetic fields, similar to coronal holes. // Methods: We defined the coronal voids via an intensity threshold of 75% of the mean quiet-Sun (QS) EUV intensity observed by the high-resolution EUV channel (HRIEUV) of the Extreme Ultraviolet Imager on Solar Orbiter. The line-of-sight magnetograms of the same solar region recorded by the High Resolution Telescope of the Polarimetric and Helioseismic Imager allowed us to compare the photospheric magnetic field beneath the coronal voids with that in other parts of the QS. // Results: The coronal voids studied here range in size from a few granules to a few supergranules and on average exhibit a reduced intensity of 67% of the mean value of the entire field of view. The magnetic flux density in the photosphere below the voids is 76% (or more) lower than in the surrounding QS. Specifically, the coronal voids show much weaker or no network structures. The detected flux imbalances fall in the range of imbalances found in QS areas of the same size. // Conclusions: We conclude that coronal voids form because of locally reduced heating of the corona due to reduced magnetic flux density in the photosphere. This makes them a distinct class of (dark) structure, different from coronal holes
    corecore