2,287 research outputs found
Enhancement of charged macromolecule capture by nanopores in a salt gradient
Nanopores spanning synthetic membranes have been used as key components in
proof-of-principle nanofluidic applications, particularly those involving
manipulation of biomolecules or sequencing of DNA. The only practical way of
manipulating charged macromolecules near nanopores is through a voltage
difference applied across the nanopore-spanning membrane. However, recent
experiments have shown that salt concentration gradients applied across
nanopores can also dramatically enhance charged particle capture from a low
concentration reservoir of charged molecules at one end of the nanopore. This
puzzling effect has hitherto eluded a physically consistent theoretical
explanation. Here, we propose an electrokinetic mechanism of this enhanced
capture that relies on the electrostatic potential near the pore mouth. For
long pores with diameter much greater than the local screening length, we
obtain accurate analytic expressions showing how salt gradients control the
local conductivity which can lead to increased local electrostatic potentials
and charged analyte capture rates. We also find that the attractive
electrostatic potential may be balanced by an outward, repulsive electroosmotic
flow (EOF) that can in certain cases conspire with the salt gradient to further
enhance the analyte capture rate.Comment: 10 pages, 6 Figure
Painting, Geography, and the Body: Charting the First Two Decades of Mary Corse’s Art
Mary Corse has always maintained her position on the periphery, and her work has generally been excluded from art historical scholarship. This study illuminates the ways in which the first two decades of Corse’s practice were in fact in dynamic dialogue with broader impulses and concurrent trends operating at the time
Localized Joule heating produced by ion current focusing through micron-size holes
We provide an experimental demonstration that the focusing of ionic currents
in a micron size hole connecting two chambers can produce local temperature
increases of up to C with gradients as large as K. We find a good agreement between the measured temperature profiles and
a finite elements-based numerical calculation. We show how the thermal
gradients can be used to measure the full melting profile of DNA duplexes
within a region of 40 m. The possibility to produce even larger gradients
using sub-micron pores is discussed.Comment: 3 pages, accepted to Appl. Phys. Lett
Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach
We study voltage driven translocation of a single stranded (ss) DNA through a
membrane channel. Our model, based on a master equation (ME) approach,
investigates the probability density function (pdf) of the translocation times,
and shows that it can be either double or mono-peaked, depending on the system
parameters. We show that the most probable translocation time is proportional
to the polymer length, and inversely proportional to the first or second power
of the voltage, depending on the initial conditions. The model recovers
experimental observations on hetro-polymers when using their properties inside
the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR
A Frame Work and Analysis to Inform the Selection of Piece-level Order-fulfillment Technologies
Thepiece-levelorder-fulfillmenttechnologyselectionproblemisanimportantstrategicproblemthatsignificantlyimpactsdistributioncentercosts andoperations,andistypicallysolvedbasedonempiricalexperiences.Given ademandcurveandasuiteofavailablepiece-levelorder-fulfillmenttechnologies, weanalyzewhereinthedemandcurvedifferentorder-fulfillment technologiesshouldbeapplied. Todoso, wedevelopaframeworkthat jointlydeterminesthebestcombinationofpiece-levelorder-fulfillmenttechnologiesandtheassignmentofSKUstothesetechnologies, whichrelaxes thesequential-modelingapproachofpreviousresearch. Wevalidateour methodologywithindustrydataandshowthatour modelprovidestechnologyrecommendationsandSKUassignmentsthatareconsistent with successfulimplementations. Throughasetofnumericalexperimentsand statisticalanalysis,weidentifykeyfactorsinimplementingmanualversus automatedorder-fulfillmenttechnologiesandprovideobservationsintothe applicationofdifferentorder-fulfillmenttechnologystrategies.Finally,we presentconclusionsandfutureresearchdirections
Investigation of the influence of hybrid layers on the life time of hot forging dies
The paper deals with the issues related in the process of drop forging with special attention paid to the durability of forging tools. It presents the results of industrial investigation of the influence of hybrid layers on hot forging dies. The effectiveness of hybrid layers type nitrided layer/PVD coating applied for extending the life of forging tools whose working surfaces are exposed to such complex exploitation conditions as, among others, cyclically varying high thermal and mechanical loads, as well as intensive abrasion at raised temperature. The examination has been performed on a set of forging tools made of Unimax steel and intended for forging steel rings of gear box synchronizer in the factory FAS in Swarzedz (Poland)
Modeling the Inventory Requirement and Throughput Performance of Picking Machine Order-fulfillment Technology
Picking machines, also known as remote-order-picking systems, are an example of a stock-to-picker piece-level order-fulfillment technology that consists of two or more pick stations and a common storage area. An integrated closed-loop conveyor decouples the pick stations from the storage area by transporting the needed totes to and from the storage area and the pick stations. We develop a probabilistic model capable of quantifying the inventory differences between order-fulfillment technologies that pool inventory with technologies that do not pool inventory. To determine the throughput of a picking machine, we develop a methodology that incorporates existing analytical models for the picking machine’s subsystems. We present a case study comparing a picking machine to a carousel-pod system to illustrate how a manager could use our methodology to answer system design questions. Finally, we present conclusions and future research
Anomalous Dynamics of Forced Translocation
We consider the passage of long polymers of length N through a hole in a
membrane. If the process is slow, it is in principle possible to focus on the
dynamics of the number of monomers s on one side of the membrane, assuming that
the two segments are in equilibrium. The dynamics of s(t) in such a limit would
be diffusive, with a mean translocation time scaling as N^2 in the absence of a
force, and proportional to N when a force is applied. We demonstrate that the
assumption of equilibrium must break down for sufficiently long polymers (more
easily when forced), and provide lower bounds for the translocation time by
comparison to unimpeded motion of the polymer. These lower bounds exceed the
time scales calculated on the basis of equilibrium, and point to anomalous
(sub-diffusive) character of translocation dynamics. This is explicitly
verified by numerical simulations of the unforced translocation of a
self-avoiding polymer. Forced translocation times are shown to strongly depend
on the method by which the force is applied. In particular, pulling the polymer
by the end leads to much longer times than when a chemical potential difference
is applied across the membrane. The bounds in these cases grow as N^2 and
N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of
the radius of gyration to N. Our simulations demonstrate that the actual
translocation times scale in the same manner as the bounds, although influenced
by strong finite size effects which persist even for the longest polymers that
we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure
Representations for Three-Body T-Matrix on Unphysical Sheets: Proofs
A proof is given for the explicit representations which have been formulated
in the author's previous work (nucl-th/9505028) for the Faddeev components of
three-body T-matrix continued analytically on unphysical sheets of the energy
Riemann surface. Also, the analogous representations for analytical
continuation of the three-body scattering matrices and resolvent are proved. An
algorithm to search for the three-body resonances on the base of the Faddeev
differential equations is discussed.Comment: 98 Kb; LaTeX; Journal-ref was added (the title changed in the
journal
- …