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MODELING THE INVENTORY REQUIREMENT AND
THROUGHPUT PERFORMANCE OF PICKING MACHINE
ORDER-FULFILLMENT TECHNOLOGY

Jennifer A. Pazour
University of Central Florida

Russell D. Meller
University of Arkansas

Abstract

Picking machines, also known as remote-order-picking systems, are an
example of a stock-to-picker piece-level order-fulfillment technology that
consists of two or more pick stations and a common storage area. An in-
tegrated closed-loop conveyor decouples the pick stations from the storage
area by transporting the needed totes to and from the storage area and the
pick stations. We develop a probabilistic model capable of quantifying the
inventory differences between order-fulfillment technologies that pool in-
ventory with technologies that do not pool inventory. To determine the
throughput of a picking machine, we develop a methodology that incorpo-
rates existing analytical models for the picking machine’s subsystems. We
present a case study comparing a picking machine to a carousel-pod system
to illustrate how a manager could use our methodology to answer system
design questions. Finally, we present conclusions and future research.

1. Introduction

Order-fulfillment, the process of fulfilling customer demand through the transfer of a set
of items from inventory, is the most critical task in the distribution process of an organi-
zation because of its simultaneous impact on the cost and the accuracy of the process [5].
Order-fulfillment requires the application of resources such as inventory, labor, and infor-
mation; therefore, designing an effective order-fulfillment process is an important aspect in
distribution center design. In this paper we consider piece-level fulfillment as opposed to
unit-load or carton-based fulfillment.

There are three typical piece-level fulfillment strategies: picker-to-stock, stock-to-picker,
and utilizing an automated dispensing system. In a picker-to-stock strategy, an operator vis-
its fixed locations to make a pick. In a stock-to-picker strategy, the items to be picked are
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Figure 1: Aerial Views of a Picking Machine and a Carousel-Pod System

transported to the operator; example technologies include carousels, vertical lift modules
(VLMs), mini-load automated storage and retrieval systems (AS/RSs), and picking ma-
chines. Finally, in an automated dispensing strategy, automated order-picking machines
are used to completely eliminate manual picking.

To meet customer requirements or to increase worker productivity, technology is often
employed in the order-fulfillment process. A picking machine, also known as a remote-
order-picking system or an automated storage and order fulfillment system [2, 16], is il-
lustrated in Figure 1(a). A picking machine consists of numerous pick stations that access
a common inventory storage area, which is usually multiple carousel units or a mini-load
AS/RS where stock keeping units (SKUs) are stored in totes. An integrated conveyor trans-
ports the requested totes to and from the storage area and the pick stations; therefore, even
though a picking machine has numerous pick stations, all pick stations utilize the same
storage area. The required orders’ shipping containers are transported via a conveyor to a
pick station. At the same time, the requested SKUs’ totes are retrieved automatically from
the storage area and are also sent to the pick station. At the pick station, pick lights indicate
to the operator both the position and the item quantity to be picked and put lights direct the
operator to the position of the container to which the items are to be transferred (the put
operation).

High-value products and short lead time requirements cause picking machines to be
used in pharmaceutical, mail order, electronic, and retail distribution facilities. Picking
machines can reduce labor costs by eliminating the walking and searching associated with
picker-to-stock systems and can provide high-product density by using vertical space ef-



fectively. Depending on the design configuration, an order-fulfillment rate of up to 1,000
order lines per person-hour is possible [16].

Horizontal carousels are also a stock-to-picker piece-level technology. Carousels are
commonly utilized in pods with more than one carousel unit per pod, as shown in Figure
1(b). This configuration allows one carousel in the pod to rotate to the next pick location
while the operator retrieves an item from another carousel in the pod. Pick lights inform
the operator of the position and item quantity to be picked. After picking the items and
putting them in the correct tote, the operator walks to another carousel in the pod and
picks again. The rotation time of a carousel is a function of the horizontal length of the
carousel; consequently, the number of carousels in a pod is frequently configured such that
the operator is the system throughput bottleneck.

As carousel systems are typically limited by throughput capacity (rather than by space
capacity) [7], multiple carousel pods may be implemented to meet throughput require-
ments. One operator is assigned to each carousel pod and batch picking is usually per-
formed. Typically all the items for a batch of orders are stored in each carousel pod; con-
sequently, SKUs can be stored in multiple locations within the carousel order-fulfillment
area. Pazour [11] discusses the relative advantages of picking machines over stand alone
carousel systems.

The broad goal of our research is to systematically analyze alternative order-fulfillment
technologies, comparing inventory and throughput requirements of technologies that pool
inventory with technologies that do not pool inventory. In our work we focus on compar-
isons with carousel systems. Picking machines can be installed with a storage area that
is either a carousel system or a mini-load AS/RS. For comparison purposes, in this paper
we only consider picking machines that are serviced via a carousel system; however, our
analyses could be extended to consider other stock-to-picker systems.

Our contribution lies in developing a methodology that incorporates multiple analytical
models to determine whether to implement a picking machine or a carousel-pod system in
a distribution center. As depicted in Figure 1(a), a picking machine can be divided into
three subsystems: a storage subsystem, a pick station subsystem, and a closed-loop con-
veyor subsystem. To model a picking machine’s inventory requirements and throughput
performance, we first model each of the subsystems independently. We analyze the in-
ventory requirements of the storage subsystem by developing a probabilistic model for the
inventory differences between a picking machine and carousel-pod system. Because the
subsystems are connected, an upper bound on the throughput of a picking machine is the
minimum of the three subsystems’ throughputs. We determine the throughput by applying
and combining analytical models for each of the subsystems. We provide a case study com-
paring a picking machine to a carousel-pod system to illustrate how our picking machine
subsystem models can be combined to answer design questions. Finally, we conclude the
paper and discuss opportunities for future research.



2. Literature Review

Whereas a vast array of academic research exists on a picking machine’s subsystems, we
are aware of only a few articles that directly address picking machines.

The early literature includes two conference papers with preliminary simulation results
that address picking machines. Perry et al. [14] use a discrete-event simulation model
to assist in the physical system design of a picking machine by determining the number
and dimension of storage aisles, number of work stations, conveyor geometry, number of
inventory buffer positions. A simple, expected-value model is used to determine initial
values for these design parameters, which are then modified based on simulation results
and throughput requirements. Their testing indicates that the conveyor subsystem is the
bottleneck on system throughput. Raghunath et al. [15] describe an interactive and flexible
simulation structure for a picking machine.

Park [9] determines the first and second moments of the cycle time of a carousel system
that performs sequential retrievals for a picking machine. By assuming the retrieval re-
quests occur according to a Poisson distribution, Park also determines the expected waiting
time of a retrieval request at the carousel system.

Picking machines have been mentioned in the literature as future research by Bozer
and White [2]: “A possibility is to investigate the use of remote picking stations where
each station is interfaced to the storage/retrieval system via a closed conveyor loop. Such
a system allows each picking station access to the aisles.” Also, Park et al. [10] classify
mini-load AS/RSs into three categories, one mentioned as future research is a closed-loop
conveyor: “mini-load systems containing a closed-loop conveyor, often called the remote
order picking system, have a closed-loop conveyor system to deliver the containers that
interconnects each aisle of the mini-load system with the remote order picking stations.”

3. Probabilistic Inventory Difference Model

An advantage of a picking machine over a carousel-pod system is that numerous pick sta-
tions can utilize the same storage locations, as the conveyor subsystem decouples the pick
stations from the storage area. To realize the inventory advantages of a common storage
area, an infrastructure investment in a closed-loop conveyor subsystem is required.

Ideally, distribution centers want to fulfill each order (in its entirety) at a single carousel
pod. To ensure this, we assume each carousel pod will store the same assortment of SKU,
requiring a SKU to be stored in multiple locations. We revisit this assumption in more
detail in Section 3.1.1. A facilities engineer faced with purchasing either a picking machine
or a carousel-pod system would need to answer the following question: What amount of
inventory savings will need to be created by the picking machine system to compensate
for the additional costs of an integrated conveyor? To answer this question, we create an
analytical model to estimate the inventory differences between the two systems. First, we
introduce the following notation.



Sets:
S SKUs; indexed by s = 1,2,...,|S|

Parameters:

p number of pods

Variables:

dy number of totes for SKU s in a p-pod system
N(p) total totes in a p-pod system

A picking machine has a single storage area and thus has inventory requirements equiv-
alent to a 1-pod carousel system. In a picking machine, inventory levels are dictated by
demand characteristics of each SKU. The number of totes for a SKU in a picking machine
is the required number of items of inventory divided by the number of items that can fit in
a tote, rounded up to an integer value. The number of totes for a SKU in a carousel system
with p pods is the maximum of the number of totes in a 1-pod system and the number of
pods. The total number of totes, N(p), is the sum of the number of totes for each SKU in
the system.

If the number of totes required in a 1-pod system is not divisible by the number of pods,
we assume the extra totes are randomly allocated amongst the carousel pods. Therefore, the
number of totes for each SKU does not have to be the same for every pod and the number
of totes in each pod does not have to be equal (albeit, the number of totes in each carousel
will be very similar).

To compare the inventory requirements in a picking machine and a carousel pod, we
present the following example. Assume we have 12 SKUs as shown in Table 1 with given
inventory requirements. Also, assume for simplicity that each SKU has 50 items per tote.
Table 1 provides the number of totes for a 1-pod system (a picking machine) and for a 2-,
3-, and 4-pod system. As the number of pods increases, the total number of totes in the
system also increases. When p > 4, all SKUs will require p totes because each SKU in
these data requires at most 4 totes in a 1-pod system (i.e., when p >4, d! <4 Vsec S or
max{d!,p} = p Vs € 5).

When the maximum number of totes required by a SKU in a picking machine is greater
than or equal to the number of pods, the total totes in a p-pod system can be estimated as a
linear function of p, as shown in Theorem 1.

Theorem 1

Ifmax{d;’} < p, then N(p) = pl$|.
se

Proof: d! <p Vsc S (because maSX{dsl} < p). Therefore,df =p VseS.
se
SoN(p)=} dl' =) p=pISl. o

seS sES



Table 1: An Example Illustrating the Inventory Requirements of Various p-Pod Systems

Number of totes (d?)

s inv. |p=1 p=2 p=3 p=4
A 175 4 4 4 4
B 150 3 3 3 4
C 100 2 2 3 4
D 75 2 2 3 4
E 50 1 2 3 4
F 25 1 2 3 4
G 15 1 2 3 4
H 10 1 2 3 4
I 1 1 2 3 4
J 1 1 2 3 4
K 1 1 2 3 4
L 1 1 2 3 4

Np) | 19 27 37 48

To demonstrate how Theorem 1 can be used as an upper bound on the percent increase
in inventory, we simulate different demand curves. We represent the ABC curve as pre-
sented by Bender [1], where the x/y curve indicates that x% of the SKUs make up y% of
the total demand. Figure 2 illustrates that as the number of pods increases, so does the
required total number of totes in the system. Additionally, as demand skewness decreases,
the increase in inventory approaches a linear function (in fact, the inventory increase for the
20/21 curve is a linear function). Linear trend lines are fit to each demand curve’s inventory
increase. The slope of the fitted line (b) and the associated > values are shown in Figure
2. All fitted lines achieve an 7 value greater than or equal to 0.9987, indicating that the
percent increase in inventory has an approximately linear relationship with the number of
pods. Additionally, all fitted lines have a slope that is greater than or equal to 0.72, illus-
trating that the additional inventory requirements of a carousel system are significant. This
is especially important when storing high-valued products, which is a primary market for
picking machine technology.

3.1 An Expected Value Model for the Number of Totes in a p-Pod Carousel System

Next, we develop an expression for the expected value of the number of totes in a carousel
system with p pods. This expected value is based on the concept of a SKU being either
low or high. We define a SKU as low if the number of copies of a SKU in a picking
machine is less than or equal to the number of pods in the carousel system (i.e., if d¥ < p).
Additionally, we define a SKU as high if the number of copies of a SKU in a picking
machine is greater than the number of pods in the carousel system (i.e., if df > p). Note,
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Figure 2: The Impact of Demand Skewness on Inventory Increases

the classification of a SKU as low or high is relative and depends on the number of carousel
pods; thus, a SKU’s classification varies as p varies. No inventory benefit is associated
with a high SKU in a picking machine. Instead, a low SKU generates inventory savings
in a picking machine because carousel systems require duplicate copies of this SKU. By
conditioning on whether a SKU is a low SKU or a high SKU, we create an expected value
model for the number of totes in a p-pod system (E[N(p)]), provided in (1).

Let f(z) be the probability that a SKU has z totes in a picking machine and F'(z) denote

Z
the cumulative distribution of z, where F(z) = )_ f(z). Then,
0

E[N(p)] =E[N(p)lz<p]Pr(z< p)+E[N(p)|lz> p]Pr(z> p)
= |S|(px F(p) +Elz|lz> p] x (1= F(p))), (1)
where .
E[le>p]zzzfiz), c=1—F(p), and m = max{d!}.
p S

In (1), alow SKU receives p copies and the probability that a SKU is a low SKU is the
Pr(z < p) or F(p). A high SKU receives z copies and the probability that a SKU is a high
SKU is the Pr(z > p) or 1 — F(p). We apply our analytical model to an example with 2,000
SKUs and assume that each SKU follows the following distribution for the number of totes
per SKU in a picking machine: f(z) = 0.65 for z=1,0.20 for z =2,0.09 for z = 3,0.03
forz=4,0.02 forz=5,and 0.01 forz=6 VseS.

Table 2 provides results from our 2,000-SKU example. The total expected number
of totes that are a low or high SKU are denoted as E[N(p)|z < p] and E[N(p)|z > p],
respectively. As the number of pods increases, so does the expected total number of totes
in the system. This occurs because more SKUs are classified as a low SKU and less SKUs
are classified as a high SKU. For example when p = 1, 65% of SKUs are considered a
low SKU, resulting in 1,300 totes (2,000 x 1 x 0.65). The remaining 35% of SKUs are
classified as a high SKU, resulting in 1,900 totes (2,000 x 2.71 x 0.35). For p = 6, all



SKUs are classified as a low SKU (i.e., none are a high SKU); consequently, each SKU
receives six copies regardless of its demand profile, resulting in 12,000 total totes and all
are classified as a low SKU (2,000 x 6 x 1.0).

Table 2: Results from our Example

p 1 2 3 4 5 6
F(p) 065 085 094 097 099  1.00
Elzlz>p] | 271 367 467 533  6.00 -
E[N(p)lz<p] | 1,300 3400 5640 7,760 9,900 12,000
EN(p)lz>p] | 1,900 1,100 560 320 120 -
E[N(p)] |3.200 4,500 6,200 8,080 10,020 12,000

In our analysis, we use the increase in totes of inventory as a surrogate to represent
the increase in inventory. We justify this representation because increasing the number of
totes increases the holding cost associated with the inventory, both in the form of increased
inventory holding costs and increased infrastructure capital costs.

We assume each SKU is to be stored in the picking machine and the carousel system,
regardless of demand profiles. An alternative view is to create an assignment model where
SKUs compete for inclusion in the picking machine (carousel system). If a SKU is not as-
signed to the picking machine (carousel system), the SKU would be picked conventionally.
Accordingly, each SKU has a labor benefit associated with being assigned to the picking
machine (carousel system) based primarily on the SKU’s demand profile. Each SKU is as-
signed space in the picking machine (carousel system), so a benefit-to-space ratio for each
SKU can be determined. In this scenario, a fewer number of SKUs would be allocated to a
carousel system than to a picking machine because a low SKU in a carousel system would
not generate a benefit-to-space ratio justifying an assignment to the carousel system.

This illustrates the potential of using picking machine technology for the order-fulfillment
of slow-moving SKUs (the category with the greatest number of SKUs). In a carousel
system, an additional fulfillment channel, such as a flow rack or pick-to-light system, cus-
tomarily exists for slow-moving inventory. This additional channel is needed because the
demand for the slow-moving SKUs is not high enough to warrant assigning one tote to
each carousel pod. On the other hand, with a single storage location, slow-moving SKUs
are assigned a single tote location per SKU; therefore, assignment of slow-moving SKUs
in the picking machine can often times be justified. Consequently, only one channel of
distribution (the picking machine) is needed in the order-fulfillment process, which has the
potential to increase overall order-fulfillment throughput and customer responsiveness.

3.1.1 Generalization to the Expected Value Model

In practice, some SKUs may not be stored in every carousel pod due to their low-demand
rates. To more accurately reflect this case, we adjust our expected value model by intro-



ducing a new parameter. Let o denote the percentage of low SKUs that are stored in only
one carousel pod. Then (1) can be replaced with (2) to denote the expected value for the
number of totes in a carousel system with p pods:

EIN(p)] = [SKI(1 —a)p+af x F(p) + Elz|lz > p] x (1 = F(p))}- 2)

In the case when o # 0, additional infrastructure and/or labor is required because every
order cannot be fulfilled in its entirety at a single carousel pod. To accommodate these
orders, carousel pods are connected either by a conveyor or by operators who manually
walk orders from one pod to another. These configurations (which connect pick stations)
are basically a carousel-pod system morphed into a picking machine.

4. Subsystem Throughput Model

We model the throughput performance of a picking machine by analyzing the storage,
conveyor, and picking station subsystems independently. Because the subsystems are con-
nected, an upper bound on the throughput of a picking machine is the minimum of the
three subsystems throughputs. To determine the throughput of the storage subsystem, we
apply an expected cycle-time model for a carousel with an S/R machine performing batch
retrievals. We apply a stability-condition model to determine if the closed-loop conveyor
subsystem will meet a given throughput requirement. Finally, we determine the number of
pick stations required to meet a target throughput.

4.1 Storage Subsystem

To analyze the storage system subsystem, we require a cycle-time model for a carousel
system that is serviced by an S/R machine. An expected single-command cycle time model
for a carousel with an S/R machine performing batch retrievals is developed in [13] and we
use this model to determine the expected cycle time of the storage subsystem. We provide
the cycle-time model from [13] in Appendix A.

4.2 Conveyor Subsystem

A closed-loop conveyor subsystem integrates the storage and pick stations; consequently,
for a picking machine to meet a throughput requirement, the conveyor subsystem also must
meet this requirement. Bozer and Hsieh [3, 4, 6] analyze the performance of discrete-
space, fixed-window, closed-loop conveyors with multiple loading and unloading stations
by developing stability-condition models. A closed-loop conveyor can be analyzed by
dividing the conveyor loop into segments and analyzing each segment independently [4],
allowing us to analyze each subsystem of a picking machine independently.

Bozer and Hsieh’s models assume Poisson-arrival rates to the conveyor and an infinite
number of buffer spaces for totes waiting to be placed onto the conveyor. In [12], Pazour
and Meller use a discrete-event simulation model of a picking machine to validate that
the stability-condition model accurately predicts stability, even when key assumptions on



Poisson-arrival rates and infinite number of buffer spaces at conveyor loading stations are
violated. Through testing, the authors show that five buffer spaces are adequate to achieve
a given throughput performance [12] and so we assume this design configuration.

We use Bozer and Hsieh’s model [4] to test if the closed-loop conveyor will be stable
or unstable for a given conveyor velocity. This stability-condition model is provided in
Appendix B. We illustrate how the stability-condition model can be applied in Section 5.

4.3 Pick Station Subsystem

The decoupling of the storage area from the pick process creates pick stations that operate
independent of each other. Therefore, additional pick stations can be added to increase
pick station throughput potential, with no impact on the storage subsystem. One operator
is required at each pick station; consequently, determining the number of pick stations
determines the labor requirements associated with a picking machine design.

The amount of time to process one tote at each pick station consists of the pick time
and a portion of the batch setup time. Without loss of generality, we assume a constant
pick time and batch setup time at each pick station, denoted as W and v, respectively. For
a given throughput requirement, the cumulative pick rate at each of the pick stations must
be greater than the arrival rate of totes to the pick stations. Let 6 denote the throughput
requirement and I" the number of pick stations. The number of pick stations required to
meet throughput can be calculated as,

T'=[6x(W-+y/n)]. 3)

In the next section we present a case study to illustrate how our inventory, carousel
expected cycle-time, conveyor stability, and pick station models can be incorporated to
guide strategic decisions.

5. Case Study: A Comparison of a Picking Machine and a Carousel-Pod System

In this section we illustrate how our methodology can be used to answer design questions.
A strategic question for a distribution center manager is whether to implement a picking
machine or a carousel-pod system. In such a design problem, the user would first need to
specify a storage and a throughput constraint. Floorspace or clear height restrictions may
also be considered. Through an example, we illustrate how to conduct an analysis that
includes labor, infrastructure, and inventory requirements.

In this example, 2,500 SKUs are being considered for assignment to either a picking
machine or a carousel-pod system. If a single storage area is used, 65% of the SKUs re-
quire 1 tote, 30% require 2 totes, and 5% require 3 totes. A throughput requirement of
1,500 totes (lines) per hour is desired. Operational characteristics for a picking machine
and carousel-pod system are as follows: horizontal carousel speed equals 0.50 meters per
second; vertical S/R machine speed equals 0.60 meters per second; carousel-pod’s height
equals 1.75 meters; picking machine carousel’s height equals 4.50 meters; picking machine



carousel’s handoff time equals 4.00 seconds; start/stop time for carousel equals 2.00 sec-
onds; and walking time between carousels equals 2.00 seconds (picking machine walk time
equals 0 seconds). Carousel heights are chosen to minimize the number of S/R machines
required. Each tote requires a storage dimension that is 0.50 meters long by 0.25 meters
wide by 0.375 meters high. A conveyor window is 0.50 meters long and can handle one
tote.

For comparison purposes, we assume the pick stations for a picking machine and a
carousel-pod system are equivalent. For both technologies, we use a pick time of 3.00
seconds per tote, a batch size of 15 totes, and a setup time for a batch of 30.00 seconds. We
believe this assumption is conservative because picking machine pick stations are fed by a
conveyor such that totes arrive at a common point, which decreases the search time of the
operator and simplifies the design of ergonomic pick stations.

To determine the floor space requirements of the storage area, F', we use the floor space
calculation in [8]. This calculation is based on the number of pick faces, as well as a tote’s
length, /, and depth, e, requirements, as shown below,

P (_<’";2>’ N ze> (I42¢) +5L. 0

5.1 Picking Machine Design

We begin by analyzing each of the three subsystems independently.

Carousel Storage Subsystem: A space requirement of 3,500 totes is needed in the pick-
ing machine’s storage area. To determine the total throughput of the carousel storage sys-
tem, we apply our expected cycle-time model from Appendix A. A storage subsystem with
six carousels, each with 49 pick faces, results in an expected cycle time of 15.67 seconds
per carousel. The total throughput of the storage subsystem is only 1,378 totes per hour
(which does not satisfy our throughput requirement of 1,500 totes per hour). A storage sub-
system with seven carousel systems, each with 42 pick faces, results in an expected cycle
time of 15.60 and produces a total throughput of 1,615 totes per hour. Therefore a storage
subsystem with seven carousels satisfies both the throughput and space requirements. This
configuration requires 91 m? of floor space.

Conveyor Subsystem: The picking machine vendor sells systems with three conveyor
velocities: 0.20 meters per second, 0.40 meters per second, and 0.50 meters per second. We
apply the conveyor stability-condition model in Appendix B, resulting in system stability
factors of 1.04, 0.52, and 0.41, respectively, for the three conveyor velocities. The 0.20
meters per second conveyor subsystem provides a stability factor greater than 1.0; there-
fore, this conveyor velocity will not be able to meet the throughput requirement. On the
other hand, a conveyor velocity of 0.40 meters per second is selected because it results in a
subsystem stability factor of less than 1.0 and will meet throughput.

Pick Stations Subsystem: The amount of time to process one tote consists of the pick
time and a portion of the setup time. To meet the throughput requirement for our example,
the number of pick stations is determined as 3 (i.e., [ (1500 x (34 30/15))/3600| = 3).



Subsystem Utilization: The subsystems of a picking machine do not work indepen-
dently; thus, a picking machine’s throughput is limited by the lowest throughput subsys-
tem. In our example, the storage area produces the lowest throughput at 1,615 when the
carousels are at 100% utilization. In this case, the pick station subsystem is operating at
75% utilization. Therefore, in our example providing additional pick station throughput
capacity or conveyor velocity, without increasing the carousel system’s throughput, will
not impact the overall picking machine’s throughput potential.

5.2 Carousel-Pod Design

Prior to calculating the throughput capabilities of a carousel-pod system, we need to use our
inventory model from Section 3.1 to determine the space requirements. Initially, we assume
that all pods have the same assortment of SKUs (i.e., & = 0). A two-pod system requires
5,125 totes, a three-pod system requires 7,500 totes, and a four-pod system requires 10,000
totes, as calculated by (1). Using the model developed in [7], we determine that four
pickers with four carousels per pod are required. This configuration results in a single
carousel throughput of 94 totes per hour, a system throughput of 1,502 totes per hour, and
a floorspace requirement of 500 m?.

Next, we analyze a carousel-pod system where 500 of the lowest-demanded SKUs are
not stored in multiple pods, but instead are stored in a single location. For a four-pod
system, this represents the case when o equals 0.20. The inventory requirements of a
two, three, and four pod system, as calculated using (2), are 4,625, 6,500, and 8,500 totes,
respectively. All SKUs will not be stored in each carousel pod; thus, all orders will not
be able to be fulfilled in their entirety from a single carousel pod. To accommodate the
transportation of these orders among pods, we increase the average walk time from 2.0
seconds to 2.5 seconds. To meet the throughput and space requirement, four pickers with
four carousels per pod are required, resulting in a system throughput of 1,614 totes per hour
and a floorspace requirement of 428 m?.

5.3 Design Comparison

Table 3 provides the requirements for the two technologies in terms of labor, inventory, stor-
age infrastructure, and storage floorspace. For our example, the picking machine system
has the lowest labor, inventory, storage infrastructure, and storage floorspace. Depending
on labor and the overall infrastructure costs of the two systems, a cost analysis can be
conducted to determine if the additional cost of a conveyor subsystem is warranted.

This example illustrates an additional advantage of a picking machine over a carousel-
pod system. By decoupling the storage subsystem from the picking process, the heights of
the carousels in a picking machine are not restricted by human reach capabilities. However,
carousel-pod height is limited by human picker capabilities. This height advantage coupled
with the increased inventory requirements of carousel-pod systems creates picking machine
storage carousels that tend to be shorter in length than carousels in carousel-pod systems,
which have floorspace advantages.



Table 3: Design Requirements Between a Picking Machine and a Carousel-Pod System

Picking Machine | Carousel-Pod System (o0 = 0) | Carousel-Pod System (o0 = 0.20)
Labor 3 Operators 4 Operators 4 Operators
Inventory 3,500 Totes 7,500 Totes 6,500 Totes
Storage Infrastructure 7 Carousels 16 Carousels 16 Carousels
Storage Floorspace 91 m? 500 m? 428 m?
Conveyor Required - -

6. Conclusions and Future Research

In summary, we analyzed inventory and throughput considerations of a complex order-
fulfillment technology, the picking machine. We developed a probabilistic model capable
of quantifying the inventory differences in a picking machine and a carousel-pod system.
Through our analysis, we illustrated the inventory potential of using picking machine tech-
nology for the order-fulfillment of slow-moving or low-volume SKUs. We determined the
throughput of a picking machine by analyzing each of its subsystems independently by
developing a methodology that incorporated multiple analytical models. To analyze the
storage system subsystem, we applied an expected single-command cycle time model for
a carousel with an S/R machine performing batch retrievals. We determined if a picking
machine’s closed-loop conveyor is stable by applying an existing stability-condition model
and determined the number of pick stations required to meet throughput. A case study ex-
ample comparing a picking machine to a carousel-pod system was presented that illustrates
how a manager could use our methodology to answer design questions.

Our research could be extended in the following ways. We assumed a carousel system
was used as the storage area of a picking machine; therefore, a generalization of our work
could be to incorporate different storage subsystems into our inventory and throughput
models. We assume that pick stations for both picking machines and carousel-pod systems
are equivalent, where the design of the pick station is actually a decision. Future research
could analyze the impact of a pick station that does not enforce first-in-first-out process-
ing of totes. Finally, we assume that a single SKU is stored in each tote, whereas some
systems store multiple items per tote to increase storage density. Therefore, the trade off
between increased storage density and throughput implications in such configuration could
be explored.

Appendix

A. An Expected-Cycle Time Model for a Carousel System with an S/R Machine Per-
forming Batch Retrievals

The following notation and definitions are excerpts of [13].



Notation:

H the carousel’s height

L the carousel’s circumference

Vi the velocity of the horizontal carousel rotation

vy the velocity of the S/R machine vertical travel

ty the time to move the S/R machine from the I/O point to the top level

of the carousel (t, = H/v,)

t the time to rotate the carousel one revolution (f;, = L/vy,)

T the normalization factor, which is the maximum of #; and #,

b the shape factor, defined as b = min{t,,t,} /tau

G the handling time to pickup or discharge a tote

g the normalized handling time to pickup or discharge a tote, defined as
g=G/t

m number of pickfaces in the carousel

n batch size in number of totes

X a random variable that represents the horizontal rotation time

A the number of stops required to pick »n items from m pickfaces

E[CT], the expected cycle time of a carousel with an S/R machine with a batch

size of n
E[CT|X =0] the expected cycle time given no horizontal rotation is required
E[CT|X > 0] the expected cycle time given horizontal rotation is required

Pazour and Meller [13] derive the expected-cycle time model for a carousel system with
an S/R machine performing batch retrievals, which is provided in (5). The expected cycle
times conditioned on whether horizontal rotation is required or not are shown in (6) and
(7), respectively. The associated probabilities are shown in (8) and (9).

E[CT), = E[CT|X = 0]Pr{X = 0} + E[CT|X > 0]Pr{X > 0}. (5)
(E[R]"+g)t fort=t,,

E[CT|X > 0] = 6)
(E[R]"+g)t fort=t,.

E[CT|X = 0] = (b+2g)r. )

Pr{X >0} = %. (8)

n—A

Pr{X =0} = )



m—1
where A = (1) L;O(m—k)qk(m,n)] and

- () B (1) (-2

B. A Conveyor Stability-Condition Model

The following notation and definitions are excerpts of [4]. In our analyses, we denote a
queue that is formed by totes waiting to be placed on the conveyor as an on-queue and a
queue that forms by totes being ejected off of the conveyor as an off-queue.

Sets:
C Carousel Systems; indexed on ¢;¢ = 1,2,...,|C|.
O Order-fulfillment or Pick Stations; indexed on 0;0 = 1,2,...,|0|.
Q Conveyor on-queues; indexed on ¢;¢ = 1,2,...,|Q)|.
K Conveyor off-queues; indexed on k;k = 1,2,...,|K|.
Parameters:
A, the flow rate on the conveyor that passes on-queue ¢ in loads per time unit.

q

Jqk the flow rate from on-queue ¢ to off-queue k.

xék 1 if a tote from on-queue ¢ to off-queue k travels by queue i; 0 otherwise.
V' the speed of the conveyor in the number of windows moved per time unit.
A, the arrival rate to on-queue gq.

U,  the expected service rate at pick station o.

0, the arrival rate to pick station o off-queue.

Variables:
SF, the stability factor for the conveyor segment that ends with on-queue g.
SF;ys the subsystem stability factor for the closed-loop conveyor.

A=Y Y faxip VieQ. (10)
q€Q,q#ikeK
Ae+A

SF, = <t veec, (11)

' A
SEO" — m’”{“m“/"o} % weo. (12)
SFyys = max{SF,}. (13)

q€0Q

The closed-loop conveyor is stable if and only if SF,; < 1. Our notation maps to [4]
directly for (10), (11), and (13). For (12), A, = min{u,,,}.
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