78 research outputs found

    Grazing Management Impacts on the Riparian Zone and Water Quality

    Get PDF
    Inappropriate farm management activities such as stock access to creeks, and poor fertiliser and effluent management can negatively impact riparian zones and waterways, contributing to increased in-stream nutrient, sediment and microbiological loads and loss of riparian biodiversity, amongst other impacts. Nutrient budgets for dairy systems indicate that on-farm nutrient accumulation and redistribution is common (Gourley 2004), which in large part is due to the uneven distribution of dairy cow dung and the nutrients they contain (Aarons et al., 2004). The \u27Gippsland Dairy Riparian Project Environmental Monitoring module\u27 was established in Jan. 2003 to monitor the impact of dairy farm management and changed riparian zone management on the riparian zone and water quality

    Comparison of landscape approaches to define spatial patterns of hillslope-scale sediment delivery ratio

    Get PDF
    A sediment delivery ratio (SDR) is that fraction of gross erosion that is transported from a given catchment in a given time interval. In essence, a SDR is a scaling factor that relates sediment availability and deposition at different spatial scales. In this paper, we focus on hillslope-scale SDR, i.e. the ratio of sediment produced from hillslopes to that delivered to the stream network. Factors that affect hillslope water movement, and thus entrainment or deposition of sediments, ultimately affecting the SDR, include upslope area, climate, topography, and soil cover. In erosion models, SDR is usually treated as a constant parameter. However, the use of spatially variable SDRs could improve the spatial prediction of the critical sources of sediment, i.e. identification of those areas directly affecting stream water quality. Such information would improve prioritisation of natural resource management effort and investment. Recent literature has described several landscape approaches to represent SDR variability in space, some of which account only for topography, whilst others consider topography and soil cover characteristics. The aim of this study was to evaluate four landscape approaches for their ability to depict spatial patterns of SDR in the Avon-Richardson catchment in the semi-arid Wimmera region (Victoria, South-east Australia). Erosion was assessed using a semi-distributed model (CatchMODS) with disaggregation based in subcatchments of around 40 km2 area. Hillslope gross erosion was assessed with a RUSLE approach. By applying the four landscape approaches using DEM and estimates of land use cover, four landscape index subcatchment distributions were calculated. These were normalised into standard distributions. Then, a sigmoid function was used to transform the standardised indices into SDR-index distributions ranging from zero to one. Finally, subcatchment SDRs were estimated as the product of the SDR-index by a whole-of-catchment SDR value that was estimated by calibration against sediment loads measured at five gauging stations of the study area. The major sources of hillslope erosion were modelled to be located in the southern hilly areas of the catchment. However, a topographic convergence approach predicted as well important contribution of hillslope-erosion sediment loads coming from the eastern flatter cropping land. The introduction of landscape-variable SDRs improved the overall goodness-of-fit of modelled versus observed sediment loads at five gauging stations located in the catchment for only the topographic convergence approach. However, the limited number of observations (11), the location of some gauging stations downstream of active gully erosion, and the lack of gauging stations monitoring the north-eastern part of the catchment hindered the assessment of which spatial distribution of hillslope erosion best represented the real catchment conditions. Further research is needed to define the relationship between landscape indices and SDR; and to evaluate the spatial distribution of erosion against more complete field evidence

    Heterogeneous Nutrient Distribution Across Dairy Grazing Systems in Southeastern Australia

    Get PDF
    The Australian dairy industry is largely based on a grazed pasture system, although most cows also consume substantial amounts of imported feed (Fulkerson & Doyle 2001). This trend is expected to increase as the Australian dairy industry continues to intensify. Fertiliser inputs of nitrogen (N), phosphorus (P), potassium (K) and sulphur (S) are still viewed as necessary to maintain adequate pasture and milk production despite the fact that most dairy farms are in net positive balance for all of these nutrients (Reuter 2001). Nutrient losses from dairy farming regions and eutrophication of waterways has gained strong public and political attention and intensive pasture systems are no longer seen as ‘clean and green’. An important aspect of a viable dairy industry in the future will be more refined nutrient management planning

    Fertiliser Responses and Soil Test Calibrations for Grazed Pastures in Australia

    Get PDF
    On-farm management of fertiliser is of major economic significance to the Australian grazing industries, based on expenditure on fertiliser and higher farm productivity that fertiliser use supports. However the application of fertiliser has traditionally been an inexact and inefficient process (Peverill et al. 1999) and there is increasing pressure for nutrient losses from agriculture to be minimised. The improved adoption and application of tools like soil testing can make substantial improvements in nutrient use efficiency but interpretation needs to be based on the best available information. This paper reports on the collation of current and historical experimental data relating to pasture production - fertiliser response relationships (nitrogen, phosphorus, potassium and sulphur) for various pasture types, climatic zones and soils across Australia

    Fertiliser Responses and Soil Test Calibrations for Grazed Pastures in Australia

    Get PDF
    On-farm management of fertiliser is of major economic significance to the Australian grazing industries, based on expenditure on fertiliser and higher farm productivity that fertiliser use supports. However the application of fertiliser has traditionally been an inexact and inefficient process (Peverill et al. 1999) and there is increasing pressure for nutrient losses from agriculture to be minimised. The improved adoption and application of tools like soil testing can make substantial improvements in nutrient use efficiency but interpretation needs to be based on the best available information. This paper reports on the collation of current and historical experimental data relating to pasture production - fertiliser response relationships (nitrogen, phosphorus, potassium and sulphur) for various pasture types, climatic zones and soils across Australia

    Variable response to phosphorus mitigation measures across the nutrient transfer continuum in a dairy grassland catchment

    Get PDF
    peer-reviewedPhosphorus (P) loss from soils to water can be a major pressure on freshwater quality and dairy farming, with higher animal stocking rates, may lead to potentially greater nutrient source pressures. In many countries with intensive agriculture, regulation of P management aims to minimise these losses. This study examined the P transfer continuum, from source to impact, in a dairy-dominated, highly stocked, grassland catchment with free-draining soils over three years. The aim was to measure the effects of P source management and regulation on P transfer across the nutrient transfer continuum and subsequent water quality and agro-economic impacts. Reduced P source pressure was indicated by: (a) lower average farm-gate P balances (2.4 kg ha−1 yr−1), higher P use efficiencies (89%) and lower inorganic fertilizer P use (5.2 kg ha−1 yr−1) relative to previous studies; (b) almost no recorded P application during the winter closed period, when applications were prohibited, to avoid incidental transfers; and (c) decreased proportions of soils with excessive P concentrations (32–24%). Concurrently, production and profitability remained comparable with the top 10% of dairy farmers nationally with milk outputs of 14,585 l ha−1, and gross margins of € 3130 ha−1. Whilst there was some indication of a response in P delivery in surface water with declines in quick flow and interflow pathway P concentrations during the winter closed period for P application, delayed baseflows in the wetter third year resulted in elevated P concentrations for long durations and there were no clear trends of improving stream biological quality. This suggests a variable response to policy measures between P source pressure and delivery/impact where the strength of any observable trend is greater closer to the source end of the nutrient transfer continuum and a time lag occurs at the other end. Policy monitoring and assessment efforts will need to be cognisant of this

    SYT1-associated neurodevelopmental disorder: a case series.

    Get PDF
    Synaptotagmin 1 (SYT1) is a critical mediator of fast, synchronous, calcium-dependent neurotransmitter release and also modulates synaptic vesicle endocytosis. This paper describes 11 patients with de novo heterozygous missense mutations in SYT1. All mutations alter highly conserved residues, and cluster in two regions of the SYT1 C2B domain at positions Met303 (M303K), Asp304 (D304G), Asp366 (D366E), Ile368 (I368T) and Asn371 (N371K). Phenotypic features include infantile hypotonia, congenital ophthalmic abnormalities, childhood-onset hyperkinetic movement disorders, motor stereotypies, and developmental delay varying in severity from moderate to profound. Behavioural characteristics include sleep disturbance and episodic agitation. Absence of epileptic seizures and normal orbitofrontal head circumference are important negative features. Structural MRI is unremarkable but EEG disturbance is universal, characterized by intermittent low frequency high amplitude oscillations. The functional impact of these five de novo SYT1 mutations has been assessed by expressing rat SYT1 protein containing the equivalent human variants in wild-type mouse primary hippocampal cultures. All mutant forms of SYT1 were expressed at levels approximately equal to endogenous wild-type protein, and correctly localized to nerve terminals at rest, except for SYT1M303K, which was expressed at a lower level and failed to localize at nerve terminals. Following stimulation, SYT1I368T and SYT1N371K relocalized to nerve terminals at least as efficiently as wild-type SYT1. However, SYT1D304G and SYT1D366E failed to relocalize to nerve terminals following stimulation, indicative of impairments in endocytic retrieval and trafficking of SYT1. In addition, the presence of SYT1 variants at nerve terminals induced a slowing of exocytic rate following sustained action potential stimulation. The extent of disturbance to synaptic vesicle kinetics is mirrored by the severity of the affected individuals' phenotypes, suggesting that the efficiency of SYT1-mediated neurotransmitter release is critical to cognitive development. In summary, de novo dominant SYT1 missense mutations are associated with a recognizable neurodevelopmental syndrome, and further cases can now be diagnosed based on clinical features, electrophysiological signature and mutation characteristics. Variation in phenotype severity may reflect mutation-specific impact on the diverse physiological functions of SYT1

    Integrated climate-chemical indicators of diffuse pollution from land to water

    Get PDF
    Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (20102016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives

    The Beast from the East: impact of an atypical cold weather event on hydrology and nutrient dynamics in two Irish catchments

    Get PDF
    peer-reviewedA historic lack of continuous stream nutrient monitoring at the catchment scale limits understanding of the effects of snowstorms. The most significant snowstorm since 1985, nicknamed “the Beast from the East”, occurred in February–March 2018. High-frequency stream outlet monitoring in two close but hydrologically and agriculturally contrasting catchments (<1,200 ha) captured phosphorus (total and reactive), total oxygenated nitrogen (TON), temperature and discharge dynamics during and after the event. The grassland catchment consists of poorly drained gley soils and exhibits overland flow pathways, while the arable catchment consists of well-drained brown earths and is dominated by subsurface pathways. Nitrate (NO3-N) concentrations were initially elevated (3.50 and 7.89 mg/L for poorly drained grassland and well-drained arable catchments, respectively) before becoming diluted by meltwater. Total reactive phosphorus (TRP) displayed a distal (anti-clockwise) concentration-discharge hysteresis in the poorly drained grassland catchment suggesting low mobilisation from the soil. Conversely, the well-drained arable catchment displayed proximal (clockwise) hysteresis, indicative of the mobilisation from stream and bank sediment. These relatively infrequent snow events behave similarly to heavy rainfall as regards nutrient losses, albeit subject to a time-lag induced by the speed of snowmelt and the soil moisture deficit (SMD) prior to snowfall. Antecedent land management is crucial to mitigate risk. The current absence of records and analyses of catchment response, particularly nutrient dynamics, to atypical cold weather events in Ireland limits understanding of their effects on water quality. The present study provides the first such baseline information from which land management strategies and the implications for attaining environmental targets can be explored
    corecore