18 research outputs found

    TET-mediated DNA hydroxymethylation is negatively influenced by the PARP-dependent PARylation

    Get PDF
    Background Poly(ADP-ribosyl)ation (PARylation), a posttranslational modification introduced by PARP-1 and PARP-2, has first been implicated in DNA demethylation due to its role in base excision repair. Recent evidence indicates a direct influence of PARP-dependent PARylation on TET enzymes which catalyse hydroxymethylation of DNA—the first step in DNA demethylation. However, the exact nature of influence that PARylation exerts on TET activity is still ambiguous. In our recent study, we have observed a negative influence of PARP-1 on local TET-mediated DNA demethylation of a single gene and in this study, we further explore PARP–TET interplay. Results Expanding on our previous work, we show that both TET1 and TET2 can be in vitro PARylated by PARP-1 and PARP-2 enzymes and that TET1 PARylation negatively affects the TET1 catalytic activity in vitro. Furthermore, we show that PARylation inhibits TET-mediated DNA demethylation at the global genome level in cellulo. Conclusions According to our findings, PARP inhibition can positively influence TET activity and therefore affect global levels of DNA methylation and hydroxymethylation. This gives a strong rationale for future examination of PARP inhibitors' potential use in the therapy of cancers characterised by loss of 5-hydroxymethylcytosine

    EpiCRISPR targeted methylation of Arx gene initiates transient switch of mouse pancreatic alpha to insulin-producing cells

    Get PDF
    Introduction: Beta cell dysfunction by loss of beta cell identity, dedifferentiation, and the presence of polyhormonal cells are main characteristics of diabetes. The straightforward strategy for curing diabetes implies reestablishment of pancreatic beta cell function by beta cell replacement therapy. Aristaless-related homeobox (Arx) gene encodes protein which plays an important role in the development of pancreatic alpha cells and is a main target for changing alpha cell identity. Results: In this study we used CRISPR/dCas9-based epigenetic tools for targeted hypermethylation of Arx gene promoter and its subsequent suppression in mouse pancreatic αTC1-6 cell line. Bisulfite sequencing and methylation profiling revealed that the dCas9-Dnmt3a3L-KRAB single chain fusion constructs (EpiCRISPR) was the most efficient. Epigenetic silencing of Arx expression was accompanied by an increase in transcription of the insulin gene (Ins2) mRNA on 5th and 7th post-transfection day, quantified by both RT-qPCR and RNA-seq. Insulin production and secretion was determined by immunocytochemistry and ELISA assay, respectively. Eventually, we were able to induce switch of approximately 1% of transiently transfected cells which were able to produce 35% more insulin than Mock transfected alpha cells. Conclusion: In conclusion, we successfully triggered a direct, transient switch of pancreatic alpha to insulin-producing cells opening a future research on promising therapeutic avenue for diabetes management. 1 Introductio

    Genotoxic potential of Cotinus coggygria Scop. (Anacardiaceae) stem extract in vivo

    Get PDF
    The intention was to evaluate the possible in vivo genotoxic potential in different cell-types, of a methanol extract obtained from the plant stem of Cotinus coggygria Scop., using the sex-linked recessive lethal (or SLRL) test and alkaline comet assay. The SLRL test, revealed the genotoxic effect of this extract in postmeiotic and premeiotic germ-cell lines. The comet assay was carried out on rat liver and bone marrow at 24 and 72 h after intraperitoneal administration. For genotoxic evaluation, three concentrations of the extract were tested, viz., 500, 1000 and 2000 mg/kg body weight (bw), based on the solubility limit of the extract in saline. Comet tail moment and total scores in the group treated with 500 mg/kg bw, 24 and 72 h after treatment, were not significantly different from the control group, whereas in the groups of animals, under the same conditions, but with 1000 and 2000 mg/kg bw of the extract, scores were statistically so. A slight decrease in the comet score and tail moment observed in all the doses in the 72 h treatment, gave to understand that DNA damage induced by Cotinus coggygria extract decreased with time. The results of both tests revealed the genotoxic effect of Cotinus coggygria under our experimental conditions

    PARP-1 and YY1 Are Important Novel Regulators of CXCL12 Gene Transcription in Rat Pancreatic Beta Cells

    Get PDF
    Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional interplay of these proteins could finely balance Cxcl12 transcription

    From inflammaging to healthy aging by dietary lifestyle choices : is epigenetics the key to personalized nutrition?

    Get PDF
    The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease

    Characterization of a B220 +

    No full text

    Relationship between serum tumor necrosis factor receptor-2 concentration and periodontal destruction in patients with type 2 diabetes: Cross-sectional study

    Get PDF
    Introduction: The role of tumor necrosis factor-α (TNFα) is well documented in pathogenesis of chronic periodontitis (CP) and type 2 diabetes (T2D). Considering short half-life of TNFα, tumor necrosis factor receptor-2 (TNFR2) is used as prosperous surrogate marker of TNFα activity. Objective The aim was to detect TNFR2 serum concentration and correlate it with periodontal destruction in patients with diagnosed T2D and nondiabetics. Methods The study included 85 patients divided into three groups: T2D + CP (group T2D, n = 34); nondiabetics + CP (Group PD, n = 27); and healthy controls (group HC, n = 24). T2D was diagnosed according to WHO criteria (2013) and periodontitis was diagnosed using International Workshop for a Classification of Periodontal Diseases and Conditions criteria (1999). TNFR2 level was measured by enzyme-linked immunosorbent assay (ELISA). Results There was no difference in TNFR2 level among the groups (Kruskal-Wallis, p = 0.482). Significant correlation (Pearson's correlation coefficient) was observed between clinical attachment loss (CAL) and TNFR2 concentration in PD group (rp = -0.460, p = 0.016). In T2D group, correlations were observed between TNFR2 concentration and CaL (rp = 0.363, p = 0.005) and periodontal inflamed surface area (PISA) (rp = 0.345, p = 0.046) and periodontalepithelial surface area (PESA) (rp = 0.578, p = 0.000). Conclusion Higher concentration of TNFR2 was associated with higher CAL, PESA, and PISA scores in T2D group. Contrary to that, nondiabetics with higher values of CAL exhibited lower concentration of TNFR2, presenting potential protective effect on periodontal destruction. These results imply that diabetes may alter TNFR2 secretion originated from periodontium.Uvod: Uloga faktora nekroze tumora-alfa (TNFα) dokazana je u patogenezi hronične parodontopatije (HP) i dijabetesa melitusa tipa 2 (DM tip 2). S obzirom na to da je poluživot TNFα veoma kratak, receptor 2 faktora nekroze tumora (TNFR2) koristi se kao marker aktivnosti TNFα. Cilj rada Cilj ovog rada je određivanje koncentracije TNFR2 u serumu i koreliranje sa parametrima destrukcije parodoncijuma kod zdravih i ispitanika sa dijagnostikovanim DM tip 2. Metode rada U studiju je uključeno 85 pacijenata podeljenih u tri grupe: DM tip 2 + HP (DM grupa, n = 34), zdravi ispitanici + HP (PD grupa, n = 27) i zdrave kontrole (ZK grupa, n = 24). Dijagnoza DM tip 2 postavljena je na osnovu kriterijuma SZO (2013), dok je dijagnoza HP postavljena na osnovu kriterijuma Internacionalne radionice za klasifikaciju stanja i oboljenja parodoncijuma (1999). Koncentracija TNFR2 merena je ELISA metodom. Rezultati Koncentracija serumskog TNFR2 nije se razlikovala među grupama (Kraskal-Volis, p = 0,482). Postoji značajna korelacija (Pirson) između nivoa pripojnog epitela (NPE) i koncentracije TNFR2 u PD grupi (rp = -0,460, p = 0,016). U DM tip 2 grupi, statistički značajna korelacija uočena je između koncentracije TNFR2 i NPE (rp = 0,363, p = 0,005), kao i parametara uticaja inflamacije iz parodoncijuma na sistemsko zdravlje - PISA (rp = 0,345, p = 0,046) i PESA (rp = 0,578, p = 0,000). Zaključak Kod pacijenata sa dijabetesom veće koncentracije TNFR2 odgovaraju većim vrednostima NPE, PESA i PISA. Nasuprot tome, kod sistemski zdravih ispitanika sa HP veće vrednosti NPE su povezane sa manjim koncentracijama TNFR2, što bi moglo govoriti o potencijalnoj zaštitnoj ulozi ovog citokina na destrukciju parodoncijuma. Rezultati govore da dijabetes može uticati na sekreciju TNFR2 iz parodoncijuma
    corecore